
APPLICATION
NOTE

6-15

Ap·119

December 1982

ORDER NUMBER: 210367-002

Ap·119

INTRODUCTION
To date, a major'obst~cle in the implementation of
bubble memories in systems has been the in
herently complex control requirements imposed
by the bubble memory devices themselves. With
the advent of Intel's BPK 72 bubble memory pro
totype kit, a design engineer can immediately
realize the benefits of non-volatility, form factor,
density and reliability without the complex control
concerns. This application note provides
additional background on the operating

characteristics of the BPK 72 and is intended to
further ease the design effort required in the im-
plementation of bubble memory systems. .

OVERVIEW
This application note provides an example of Bub·
ble Memory system implementation using the
BPK 72 and an Intel 8086 microprocessor. Before
looking at this example, some explanation is
necessary as to how this implementation was at
tained and how a user can take advantage of the
principles involved.

·6·16

Ap·119

As an introduction, the basic architecture of the
BPK 72 is reviewed followed by an explanation of
the operating characteristics of the BPK 72 kit as
a whole and of the 7220 Bubble Memory Con·
troller. Once the building blocks are in place, a
detailed account of the implementation of a bub
ble memory kit is offered. The final section, which
involves the actual implementation of the BPK 72
and an SDK-86, completes the application note.

BUBBLE SYSTEM OVERVIEW
A block diagram of the Intel Magnetics 128K-byte
system is shown in Figure 1. The support circuitry
used with one 7110 magnetic bubble memory
(MBM) in the BPK 72 kit consists of the following
integrated citcuit components: one 7250 Coil
Predriver, two 7254 Quad VMOS Drive Transistor
packs, one 7230 Current Pulse Generator, and one
7242 Formatter/Sense Amplifier. The 7220 Bubble
Memory Controller (BMC) completes the basic
system.

8086 BUS

t
7220

BUBBLE MEMORY CONTROLLER

'"

FORMATIERI
SENSE AMP

....
....

7242 ...

The 7250 and the two 7254s supply the drive cur
rents for the in-plane. rotating magnetic field (X
and Y coils) that move the magnetic bubbles
within the MBM. The 7230 supplies the current
pulses that generate the magnetic bubbles and
transfer the bubbles into and out of the storage
loops of the MBM.

The 7242 accepts signals from the bubble detec
tors in the MBM dtlring read operations, buffers
the signals and performs data formatting tasks
that include the transparent handling of boot loop
information. During write operations, the 7242
enables the;current pulses of the 7230 that cause
the bubbles to be generated in the 7110 MBM.
Automatic error detection and correction of the
data can be performed by the 7242.

The 7220 provides the user interface, performs
serial-to-parallel and parallel-to-serial data conver
sions, and generates all timing signals necessary
for the proper operation of the MBM support cir
cuitry.

" COIL PRE DRIVER

~
7250

J,. J,.
DRIVE I I DRIVE

TRANSISTORS TRANSISTORS

J,. J,.
INTEL MAGNETICS

BUBBLE
MEMORY

7110

!

.1 7230 l
CURRENT PULSE

"1 GENERATOR 1

Figure 1. Block Diagram of the 128K Byte Magnetic Bubble Memory System

6-17

AP·119

8°iUS

7250 (CPO)

I BUB~LE MEM~~ CONTROLLER I ~
COIL'

PREDRIVER

'"
....

,
DRIVE

TRANSISTOR
'VMOS (2·7254)

FORMATTER/SENSE AMP
"

I

I I
•

• • :.

I I I
• • • • • • • • • • • •

I I ..
..
. ;. ,.

roo---

INTEL
MAGNETICS

7242 BUBBLE
MEMORY

7110

~
,

'"

.. I 7230 (CPG) r-'" I CURRENT PULSE
GENERATOR

1 MEGABIT BUBBLE STORAGE UNIT

1 MEGABIT BUBBLE STORAGE UNIT

• • •

1 MEGABIT BUBBLE STORAGE UNIT

"

Figure 2. Bubble Memory System Expansion up, to One Megabyte

'Figure ,2 shows how larger systems can ·be builL
from the basic components. A Bubble Storage
Unit consists of one 128K'byte MBM and the five
'support chips shown. The components needed for
one MBM cell are available as the BPK 70 kit.
:Larger systems can be constructed from'the com
ponents supplied with one BPK 72 kit (Illihich in
cludes the 7220 controller) and one or more BPK
70 kits. For example, a one megabyte'system can

- be assembled from one BPK 72 kit and seven BPK
70 kits. No additional TTL parts are required when
building multi bubble systems with up to eight
MBML '- '

6-18

One 7220 is capable of controlling up to eight Bub·
ble Storage Units simultaneously; Larger systems
can be configured with multiple 7220's and addi
tional Bubble Storage Units.

Functional Organization of, the
7110 Bubble Memory

The Intel Magnetics 7110 Bubble Memory utilizes
a "major track/minorloop" architecture. With this
architecture, if a binary 1 is to be written, a "seed
bubble," ~Iways, present in the 7110, is split in
two. One bubble remail'!s at the generator as the

Ap·119

seed, and the other is propagated down· the input
(major) track. If a 0 is to be written, the seed bub~
ble is not duplicated. The data generated is .sent
down the input track, in serial, until it is aligned
with the "swap" gates at the minor loops of the
device. The. new data is then swapped into the
minor loops in par~lIel at the.same time the old
data is swapped out to the major track.

To read data from the 7110, data is rotated in the
minor loops until it is positioned at the "replicate"
gates opposite the output track. On receipt of a
replicate signal, the data in the minor loops is
duplicated by splitting the bubbles. The original
data remains in the minor loops, and the duplicate
data is clocked down tne output track where the
detector elements of the bubble memory .operate
to transform the presence or absence of a bubble
into small electrical signals that are converted in
to digital '1' and '0' signals in the 7242 FSA.

With the 7110, the process of reading data from
the minor loops by si·multaneously splitting all of
the bubbles in a page is known as "block
replicate:' The·advantage of the block replicate ar
chitecture is that the data currently'stored in the
minor loops is not compromised during a read
operation; the data to be read never leaves the
minor loops. This architecture can be contrasted
with earlier architectures that required the data to
leave the minor loops, be·· detected and· then
returned to the minor loops. In the event ofa
power failure, bubble systems not utilizing the
block replicate architecture could suffer a loss of
data during a read operation; the data being sens
ed would not be returned from the major loop to
the minor loops.

With the i110 MBM, there are 2048 positions for
the data within a minor loop. To move the bubbles
in the· MBM, a magnetic field .is induced and
rotated in the plane of the 7110. As the field is
rotated 360 degrees; every bubble is moved ahead
one position, and all of the bubbles· maintain the
same positi()n relativetci one·another~ All of the
bubbles in similar positions in the loops are refer
redtoas a '~page." .

By way of.illustration,suppose the bubble is made
of five minor loops(a,b,c,d;e) capabl~ of holding
nine pages of data (Table 1). During four 360
degree "rotations" of the in-plaiiemagnetic field,
the nine pages of data shift four positions
(1.1, 1:2, 1~3; 1;4): .

6-19

Table 1. 7110 Loop Operation

abcde abcde abcde abcde

, 00000 00011 00000 00000
00011 00000 00000 11111
00000 00000 11111 00000
00000 111.11 00000 00000
1'1111 00000 00000 00000
00000 00000 . 00000 10110'
00000 00000 10110· 00000

·00000 10110· 00000 00011
10110· 00000 00011 ·00000

1.1 1.2 ' 1.3 1.4

• = page zero

The 7110 MBM actually contains 320 minor loops,
of which 272 must be good. The additional 48
loops provide 15% redundancy. This redundancy
factor allows some·of the loops in the 71·10 to be
bad while maintaining a completely functional
one megabit device. A map of the good and bad
loops is placed on the label of the 7110 and is also

~(::===. =LO;OP::272===-4j;:~.. D~:g;~R
~(LOOP 271 .j)

INPUT
TRACK

t .
:

~(,-==~L~OO;P3~==-j;::~
~(LOOP 2 ". ~)

!!;.(LOOP 1 j1+

BUBBLE
GENERATOR

OUTPUT
TRACK

t

Figure 3. Functional' Organization of the· 7t10

Ap·119

encoded and placed in the boot loop of the device
as it is tested. This map, the bootloop, consists of
forty bytes of data. Each good loop in the 7110 is
represented bya one, each bad loop by a' zero.
When the, system is initialized, the 7220 BMC
reads the bootloop from the 7110 and decodes it.
The bootloop is then automatically placed in the
bootloop register of the 7242. The bbotloop
register serveS as aworking 'map' of the 7110 for
read arid write OpEm3.tions. . ,

With the pages of data rotating around tne minor
loops, there must be a mechanism to orient the
device and to assign a starting address toa page.
The mechanism used to identify page zero in
volves the bootlqop that resides on the 7110. Page
zero (or address zero) is defined as the position of
the 7110 after the bootloop has been read by the
7220 contrpller, Thus, each time the host CPU
sends an~',initialize" command, thebootloop is
readby the 7220, and the 7110.is queued at page
zero, From this point, any desired page, in. the bub·
ble can be obtained by the ,controller.

Data Flow. Within the Bubble Memory .
System .

To better understa'nd the relationship between the
7110 MBM and its support circuitry, the data flow
within the. bubble system during a read operation
is examined. During the read operation, bubbles

, from the storage loops arereplicated,onto an out:
put' track and then moved to a detector within the
MBM. All movements within the MBM occur under
the influence of a rotating magnetic field; the
number of rotations and the rotation timing are
under :the coritrol of the 7220 BMC. The detector
outputs a' ,differential voltage according to
whether a bubble is present or absent in the
detector at any given time. This voltage is fed to
the detector input of the 7242 Formatter/Sense
Amplifier (FSA).· ,

The data path between. ,the 7110 M BMand the
7242 FSA, conSists of two channels (channel A and
channel B) connected to the two halves of· the
MBM. When data is written, the bit stream is divid·
ed with half of the data going to each side of the
MBM. During a read operation, data from each half
of the MBM goes to the corresponding channel of
the FSA. In the, FSA, the sense amplifier. performs
a sample·and-hold function on the detector input
data, and produces a digital.Oor1. The·resulting
data bit is then paired with the corresponding bit
in the FSA bootloop register.

If an incoming data bit is found to be from a good
loop (a corresponding '~1" in the FSA bootloop
register), it is stqred in the FSA FIFO; otherwise, it
is ignored. This process continues until both FSA

FIFOs (channels A and B) are filled with 256 bits.
Error 'detection and correction, if enabled by the
user, is applied to each block of 256 bits at this
point. If erro(correction is not enabled, 272 bits of
data can 'be buffered in each FIFO.

As data leaves the 7242 FSA, the bit patterns buf
fered in each ofthe FSA FIFOs is interhilaved and
sent to the 7220' BMC in the form of aser'ial bit
stream via a one·line bidirectional data bus (010
line). In the 7220 BMC, the data undergoes a serial
to-parallel conversion and is assembled into bytes
that are buffered in the 7220 FIFO. It is from this
FIFO that the data is written onto the user inter·
face.

COMMUNICATING WITH THE 7220
The CPU views the 7220BMC as two input/output
ports on the bus. When the least-signi'ficant bit of
the address line is active (AO=1), the com
mand/status port is selected. When the least
significant bit of the address .line is inactive
(AO = 0), the bidirectiohal data portis selected. In
order to defi riethe operations on these ports, it is
necessary to understand something' of the inter
nal organization of the 7220 Bubble Memory C'on-
troller. . ',,' ' ,

For simplicity, the user need only view the 7220 as
containing a 40-byte FIFO and a collection of a:bit
registers . .The FIFO is a buffer through which data
passes on its way from the 7242,Formatter/Sense
Am plifier (FSA) to the user, orfrorn the. user to the
FSAs. The ,primary purpose of .the FIFO is to
reconcile differences in timing requirel)1el')ts bet
ween the user interface to the 7220 controller and
the controller interface to the FSAs. '

The six.a·bit registers internal to the 7220 are load
ed by the user prior to any operation of, the bubble
system anp contain information, regarding the
operating ,mode of the . 72?0. ,Lo~ding the. 7220
registers before any commands are sent'is similar
to passing parameters to, a subroutine prior to in
vocation, hence, the regis,tersare often referred to
as "Parametric; registers.'" .

Data transferred between the CPU and the 7220
FIFO and parametric registers takes place over an
a·bit data port. The choice as to whether,the data
is destined for the' FIFO or the'plir;lmetric
registers;. however, ,is made through the., cOrn' '
mand/status, , port. In one case, .the"actual como.
mandsthat cause some operation, to take place,.
such as a read or write, consist of a 4·bit code sent
by the CPU to select one of 16 possible {:om·
mands. This 4·bit code occupies the low·order nib
ble (bits 0, 1,2, and 3) of the command byte. The
command byte must also have bit 4 set to indicate
to the 7220 that a command is being sent. In the

6-20

Ap·119

second case, another 4·bit code on the command
port (bits 0, 1, 2, and 3) is used to select either one
of the parametric registers or the 7220 FIFO. As
shown in Table 2, if bit 4 of the command byte is
set to zero, the value· of the low-order nibble. is
taken to be a pointer value that specifies a
parametric register or the 7220 FIFO. This pointer
is referred to as the "Register Address Counter" .
(RAC).

Table 2. Command Port Function

FUNCTION D7 D6 D5 D4 D3 D2 D1 DO

Command 0 0 0 1 C C C C
RAC 0 0 0 0 R· R R R

RAC values that may be sent out on the command
port and the corresponding register names are il
lustrated in Table 3. The RAC points to, or selects,
six unique registers and the 7220 FIFO. Once a
RAC value is sent by the CPU to the 7220 via the
command port, the next read or write operation to
the data port transmits data to or receives data
from the register addressed. Notice that the six
registers have values that are in ascending order
starting at OAH and that the FIFO has a value of O.

The reason for this ordering is due to the auto
incrementing feature of the RAC; once the first
register is selected, each subsequent byte of data
on the data port causes the RAC to be
automatically incremented and to point to the
next register in the sequence. Once the most
significant byte of the Address Register has been
loaded, the RAC value automatically rolls over
from OFH to 0 and points to the 7220 FIFO. The
system is now in position to transfer data to or
from the FIFO without the user code explicitly
pointing to the FIFO.

6-21

Table 3. Register Address Counter Assignments

Register Name 07 06 05 04 03 02 01 DO Readl
Write

Utility Register 0 0 0 0 1 0 1 0 R/W

Block Length
Register (LSB) 0 0 0 0 1 0 1 1 W

Block Length
Register (MSB) 0 0 0 0 1 1 0 0 W

Enable> Register 0 0 0 0 1 1 0 1 W

Address Register
(LSB) 0 0 0 0 1 1 1 0 R/W

Address Register
(MSB) 0 0 0 0 1 1 1 1 R/W

7220 FIFO 0 0 0 0 0 0 0 0 R/W

Once the FIFO has been selected, the RAC stops
incrementing and continues to pOint to the FIFO
until changed by the user software. This sequence
minimizes the number of instructions necessary
for a given transaction and aids in establishi·ng a
protocol to ensure that all of the necessary infor
mation . is sent to the controller. The user,
however, is not bound to follow this automatic se
quence. Each parametric register may be selected
and loaded in any order; specific registers may be
updated where needed, but in each case, the host
software must explicitly name the register to be
loaded. Until a user is familiar with the bubble
system, it is recommended that the auto
incrementing feature be used.

It is important to remember that once a command
has been given to the 7220 BMC, the parametric
registers must not be updated until the Status
byte indicates that the operation. is complete. The
parametric registers are, in effect, working
registers for the controller during the execution of
a command. For example, during a Read or Write
operation, the Block Length Register, which con
tains the terminal page count for the operation, is
decremented by the 7220. Similarly, the Starting
Address Register; which initially contains the
starting page for an operation, is incremented by
the controller as each pa(je is transferred. Attemp
ting to modify these registers during the operation
of a command causes the biock count and ad
dress to be incorrect.

Addressing the Bubble Memory System
One of the interesting aspects of the Intel Bubble
Memory System is its inherent addressing flex
ibility. The user may treat a 7220 BMC with eight

AP·119 '

bubbles as a collection of 16K pages of 64 bytes
each (addressing each bubble in turn) or as collec·
tion of 2K pages of 512 bytes each (addressing
eight bubbles in parallel). Of course, tbere are a
variety of configurations in between these two.ex·
tremes, each dictated by the user's need f.or
speed, power consumption,address space, and
cost. Control over the configuration is achieved at
run time via two of the parametric registers: the·
Block Length Register and the Starting Address
Register.

The Block Length Register (BLR) is a 16-bit value
divided into two fields: the "terminal count" field
and the "channel" field. The bit configuration for
the BLf! is as follows:

Table 4. Block Length Register

channel terminal count
;SiC c~ C c" X T T T T "T T T T T T T'"

MSB LSB

The "terminal count" field ranges over eleven bits
and defines the total number of pages requested
for a read or write operation. With eleven bits in
the field, a user may request from one to 2048
pages be transferred (eleven bits of zero indicate a
2048-page transfer). The width of the page is ef
fectively defined in the "channel" field: This field
specifies the number of FSA channels that are to
be addressed. Recalling that each 7242 FSA has
two channels to communicate with one 7110 bub
ble memory, the legal combinations in this field
address one channel (one half of a 7110), two, four;
eight, or 16 channels. These combinations
translate into page sizes of 32, 64, 128,256, or 512
bytes, respectively. (The one-channel, mo.de of
operation is usually reserved for diagnostic pur
poses, and examples of its use. will ,be illustrated
later.)

Table 5 shows the relationship between the
"channel" field and the number of· FSA channels
selected. Notice that the channel field bits are en
coded. A value of "0001" binary selects two FSA
channels: 0 and 1.

TableS. 'FSAChannel Select

Channel field (BLR MSB bits 7, 6, 5,4)

0000 0001 0010 0100 1000

Number bf
channels 0 0,1 0,1,2,3 o to 7 Oto F
selected:

Thus, a BLR value of "0001" in the high:order four
bits selects one bubble through channels 0 and 1
Similarly, a BLR value of "0010" selects two bub
bles in parallel with a page size 01128 bytes. This,
however, is not the complete story. For example, a
value of "0100" in the BLR selects four bubbles in
parallel through channels 0 to 7. Suppose, that
there are eight bubbles in the system and that the
user desires to arrange the eight bubbles as two
sets of four. The mechanism to communicate
through channels 0 to 7 and channels 8 to F
resides i.vith the Address Register (AR).

The Addres's Register contains a 16·bit value divid
ed into two fields: a "starting address" field of
eleven bits and a "magnetic bubble memory
(MBM) select" field of four bits.

Table 6. Starting Address Register

MBM Select starting .address

X~'A A A A A A A A A A '"
MSB LSB

The. eleven bits ir:1 the starting address field of the
AR.are set by the user to indicate to the 7220 BMC
on which page of a bubble's 2048 pages the
transfer is to start. For example, if.a read opera
tion is to start at page 1125 and is to continue for
16 'pages, the starting address field contains
1125, and a value of 16 is placed in the terminal
count field of the BLR. After each page is transfer
red, the starting address field is incremented and
the terminal count is decremented by the con
troller.

6-22

Continuing with the example of two banks of four
bubbles, notice in Table 7 that the MBM select
field is needed to switch between the two banks.
A value of "0000" in bits 3, 4, 5, and 6 of the high
order byte of the address register selects bank 0
or FSA channels 0 through 7; a value of "0001"
selects bank 1 or FSA channels 8 through F. Each
bank contains 2048 pages of 25~ bytes.

AP-119

To operate eight bubbles serially, a user needs on
ly to specify a value of "0001" once in the channel
'field of the BLR and to begin with a value of
"0000" in the MBM select fh3ld. As page 2048 is
written in the first bubble, the AR, managed by the
7220 controller, rolls over to 0 and updates the
MBM select field with no additional bit manipula
tion. In this case, the bubble system appears as
16K pages of 64 bytes each. Power consumption
is one-eighth of that consumed by operating eight
bubbles in parallel. However, the data rate is
limited to the data rate of one bubble.

Table 7_ FSA Channel SelectlMBM Select

MBM SELECT "CHANNEL FIELD" (BLR MSB bits 7, 6, 5, 4)
AP. MSB BITS

(6,5,4,3) 0000 0001 0010 0100 1000

0 0 0 0 0 0,1. 0,1,2,3 o to 7 a to F
0 a a 1 1 2,3 4,5,6,7 8 to F
a a 1 a 2 4,5 8,9,A,B
a a 1 1 3 6,7 C,D,E,F
a 1 a a 4 8,9
a 1 a 1 5 A,B
a 1 1 a 6 C,D
a 1 1 1 7 E,F
1 a a a 8
1 a a 1 9
1 a 1 a A
1 a 1 1 B
1 1 a a C
1 1 a 1 D
1 1 1 a E
1 1 1 1 F

The Enable Register
The Enable register is the parametric register that
defines the various modes of operation of the
7220 controller. The data transfer mode (polled, in
terrupt driven, or DMA operation) is. selected by
setting the appropriate bit in this register.
Likewise, the type of error correction to be applied
to the data is selected, based on the bits selected
in this register.
While the function of each of the enable register
fields is described in the BPK 72.manual, some of
the finer points and implications are detailed here.

Note that it is possible to completely change the
operating characteristics of the bubble system
through software control. A system can go from
.the DMA mode with error correction enabled to a
system operating in polled I/O with no error cor
rection enabled by altering the value of the Enable
register. Though most implementations will not
take advantage of this degree of flexibility, there
are cases where the Enable register is modified
during system operation. For example, the normal
interrupt and MFBTR bits can be modified bet
ween operations to change interrupt and read data

6-23

rates, respectively. (If the error correction mode is
changed, the CPU must issue an Initialize com
mand to the 7220 controller).

INTERRUPT ENABLE (NORMAL)
INTERRUPT ENABLE (ERROR)

lJJ~~~~~~~ DMA ENABLE
MFBTR
WRITE BQOTLOOP ENABLE
ENABLE Reo
ENABLE ICD
ENABLE PARITY INTERRUPT

Figure 4. Enable Register Definition

The interrupt capabilties of the 7220 are reflected
in the NORMAL, PARITY and ERROR INTERRUPT
bits of the ENABLE register byte. The 7220 con
troller is capable of issuing interrupts to a CPU at
the normal completion of an operation, if a parity
error is encountered between the 7220 controller
and the CPU, or if a data transfer error is found by
the 7242 FSA. Any (or all) of these conditions are
selected via the Enable register byte, and any
resultant interrupts are sent to the CPU via a
single INT line. At this point, the software must
examine the status register to determine the
cause of the interrupt. (An additional interrupt, the
FIFO half-full interrupt, is issued on the ORO pin.
and is not controlled by the Enable byte).

One of the more difficult aspects of the ENABLE
register byte to understand is the operation of the
ERROR INTERRUPT bit (bit 2). This bit normally is
not used alone, but in conjunction with the
ENABLE RCD and ENABLE ICD bits of this
register. These three bits form combinations that
gate selected 7242 error conditions to the CPU.
For example, if, while operating under error cor
rection, a user does not wish to be bothered by an
interrupt that indicates an error has been cor
rected automatically by the system, a specific pat
tern of these three bits would be selected (100 or
010 from Table 8). If the user wishes to be notified
of all errors, another pattern would be selected
(011 or 101).

AP·119

Table 8. Error Correction Combinations ", .

Interrupt
Enable Enable Enable

ICD RCD (ERROR) Interrupt Acti.on

0 0 0 No interrupts due to errors
0 0 1 Interrupt on'TE only
0 1 0 Interrupt on UCE orTE
0 1 1 Interrupt onUCE, CE or'TE
1 O· .0 Interrupt on UCE or TE
1 0 1 Interrupt on UCE. CE or TE
1 1 0 Not used
1 1 1 Not used ,

The purpose of the ERROR INTERRUPT bi.t is not
to enable or disable error interrupts, but rather to
aid in selecting the type of error interrupt received
by the CPU. If any type' of .error correction is
selected, interrupts are enabled automatically.

The ENABLE RCD (read corrected data) bit causeS'
the error correction algorithm. to be applied to the
data being transferred from the 7110 MBM in an
almost transparent manner. The RCn bit allows
the 7220 controller to send its own commands to
the 7242 FSA. These commands cause the FSAtb
automatically correct -and transfer to the con- -
troller, any data that is found to be in error and -
that is considered correctable.

With only the RCD bit on, no interrupt is generat~d
if a correctable error is found. HOwever, the user is
informed that'a correctable error \Nas' encountered -
and corrected during the data transfe'r via the 7220
status -byte at the end of the operation. Uncorrec
table and timing errors cause; an interrupt tb
which the CPU mustrespond.With.both theRCD
bit and ERROR INTERRUPT bit bn, the CPU is
notified via an interrupt whenever acorrectc~ble; ,
uncorrectable or timing error is encountered,~ _

The RCD mode of oper~tion 'is s~i.'table for
transfers where. a 'GO/NO GO termination . issuffh
cient. For'example,when loading executablecode.
from the bubble to RAM, it is necessary to know
that the tra.nsfer was good (with errors correCted)
or aborted due to, an uncorrectable error. . ,

A retry of an uncorrectable page of data is. ac
complished by sending another Read command
without modifying the parametric registers. It may
be the case that the errors encountered were soft
(read) errors that may not be present on a retry.
Thus, what may have been detected as an un'cor
rectable error, may become a correctable error (or
simply vanish) on a subsequent read of the off!,!n
ding page. In this case, the error correction ability
of the system corrects the errors automatically
without additional user intervention.

The.-advantage of theRCD mode of operation is
that error correction can be applied transparently
to the CPU except for uncorrectable cOnditions. '
The disadvantage is that a page of uricorrectable
data.. Is passed to the controller before the inter
rupt is sent The softWare must have the a.bility to
clear the 7220 FIFO . prior to rereading the offeri-
ding page from'the bubble; ,

If'a given page continues to show up" ashavil1g a
correctable error aftel' a number. of retry's, it is up
to the user's protocol to determine the 'action' to.
be taken. One protocol suitable for haridling er
rors involves "scrubbing" the data. Suppose a
page appears with an error and, on retry, tlie error
is still present. If the error iscotrectable, the data'
should be corrected and written back' to the bub
bleand then read back into RAM, The probability
of encountering an 'unc~meetable error after the
first, retry is J in 10'6; Data scrubbing after 'one'
retry maintains this level of rer'iability. .

The ENABLE ICD (Internally correGt data) bit also '
enables the error corr-ection ,capability of the bub
ble system, but allows a slightly different interac
tion between the 7220 controller and the 7242·FSA
than defined for the RCD mode, Error interrupt
conditions are the same as defined JorRCD opera
tion. With the ICD bit on, correctable errors are
handled.automatically, but the operation halts for
uncorrectable or timing errors. With both the .ICD
and ERROR INTERRUPT bits ,on, the,operation'
halts for' correctable, uncorrectable or timing er
rors. The ICD mode differs from the RCD mode in
that when an operation halts due to an error,.the
offending ,,"age is held in thih242FSA and is not
autom~ti~allytraf1sferred ',to" the .. 7220 FIFO.
Though the difference is sllbtle, the ICD'mode of
opera.tidrl allowsmoreflexi'bility i'nerr~r logging
and·recoyery. 'With data held if'!, the 7242,(he
number,o(the .b.ad. page 'can' be reCidfor logging
puh)oses;and the data cari be recycled through.
the erro'r 'correction .network or reread from the'
bubble repeatedly. When the'CPu.is i),terrupted
diJe to an error in the'leD mode, the. user' must
look a.t the 7220status byte to; determi ne the'type
of error encountered. If the error 'Is correctable,
the user's software sendS a Read Corrected' Data
command (OCH) to the controller. This command
causes the controller to iSsue it~s own commands'
to'the 7242 to correct the error and totr'ahsferthe
datato'the 7220 FIFO. (Recall thisactlonls dorie'
automaticallY'iNhenthe RCD models' selected;u~
correctable ;errors can be handled 'as described
above). ., ,

As 'an example'o(how the;ICD'mode ca~ be ~tiliz
ed, suppose thatduring adat~ transfe.r in the RPD
mode, a correctable error cOnsistently occurs. The

&-24'

AP·119

error, of course, is automatically handled by the
7242, and the only indication that an error had
been corrected is through the status byte at the
end of the transfer. There is no information as to
how many or in what page the error or errors ap
pear. One way to diagnose the problem is to
reread the entire data block in the ICD mode with
the ERROR INTERRUPT bit on. The transfer stops
at the appearance of any error, and the data re
mains in the 7242. The page number of the error
can be found by reading the Address Register
since this register is incremented automatically
after each page is read if no error is detected.

The user should then issue an RCD command to
the 7220 to allow the page to be corrected and
transferred to the 7220. Once the transfer is com
plete, the enable register again is changed to
disable all error correction, and the 7220 is
reinitialized. The entire block is read again arid
compared with the corrected version. (Error cor
rection bits are appended to the data and can be
ignored.) If a bad loop is suspected, the bad loop
location could be calculated and the bootloop
modified.

It is unlikely that repeated correctable errors are
sufficient motivation to modify the bootloop.
Repeated uncorrectable errors, however, at the
same location, might be sufficient reason. Note
that modifying the bootloop is an extreme
measure and should only be performed as a last
resort and only if justified by test data.

The Status Register

The,7220's 8-bit Status register is accessed by
reading the Command port (AO = 1). This register
provides information regarding error conditions,
the termination of commands, and the readiness
of the controller to transfE!r data or accept new
commands.

FIFO AVAILABLE
PARITY ERROR

lJJ~~~~~~~ UNCQRRECTABLE ERROR
CORRECTABLE ERROR
TIMING ERROR
OP FAIL
OP COMPLETE
BUSY

Figure 5. Status Register Definition

Values for the Uncorrectable Error and Correc
table Error fields are generated when error correc
tion is utilized as previously defined. The PARITY
ERROR bit is set when a parity error is en
countered on data sent to the controller on the
00-07 lines. The TIMING ERROR bit is set for a
number of conditions. The most frequent cause of
a timing error is when the CPU fails to keep up
with the rate at which the controller is filling or
emptying the FIFO (an overflow or underflow con
dition). With one bubble in the system and the
MFBTR bit of the Enable byte set to one, the con
troller moves data to or from the FIFO at a rate of
about one byte every 80 microseconds. With eight
bubbles operating in parallel, the rate is about one
byte every 10 microseconds. (With the MFBTR bit
set to 0, the data rate on a one page transfer or the
last page of a multipage transfer is four times
these rates.) Once a Read or Write command is
issued, if the CPU cannot meet these transfer re
quirements, a timing error results.

Another way in which a timing error' occurs is
when the proper number of bits is not set in the
bootloop register of the 7242 FSA. The 7242 must
have 272 loops active to operate properly (270 with
error correction enabled). If a mistake is made
either when the bootloop of the 7110 is written or
if the bootloop register is loaded incorrectly from
RAM by the user, a timing error results. A timing
error also occurs if the Write Bootloop command
is issued to the 7220 controller and the WRITE
BOOT LOOP ENABLE bit of the Enable byte is not
on. Finally, a timing error is generated if the
bootloop synch code is not found when a Read
Bootloop or Initialize command is issued.

The OP FAIL and OP COMPLETE bits of the status
register simply indicate the state of an operation
after a command is executed. If an operation fails
(OP FAIL = 1), the cause can be determined by
looking at the other error bits of ttie status byte.
When an operation (command) terminates suc
cessfully, the OP COMPLETE bit is set, and the
status register shows a 40H.

6-25

The FIFO AVAILABLE bit of the status byte is
more complex than the other bits since its mean
ing can change depending on the type of opera
tion being performed as outlined below.
From an operational paint of view, the FIFO
AVAILABLE bit acts as a gate fqr the FIFOhandl
ing software. During a write operation, if the FIFO
bit is set (1), there is room for more data; if the
FIFO bit is clear (0), the FIFO is full. During a read
operation, if the FIFO bit is set, data has been
placed in the FIFO by the controller; if it is clear,
the FIFO is empty.

AP·119

Table 9. FIFO Available Bit Semantics

FIFO AVAIL BUSY = 1 BUSY = 1 BUSY = 0
BIT & writing & reading & reading

1 room for data data avail. data avail.

0 no room no data no data
for data -

Note that it is possible to complete an operation
with data still remaining in the FIFO (indicated by
a 41 H status value). This condition is quite legal; it
is up to the software 'to remove the data or to issue
a FIFO RESET command.

The BUSY bit indicates. when the controller is in
the process of executing a command. When a
command is sent, the BUSY bit gO,es active within
a few microseconds after the command is receiv,·
ed and remains active until the operation either
completes or fails. It is important to note that the
BUSY bit remains active until all other bits in the
status byte have been set. Thus it is possible to
see logically·exclusive conditions such as BUSY
and OP COMPLETE at the same time. The key to
interpreting the status byte is to consider the
status byte valid only after the BUSY bit returns to
an inactive level. The single exception to this rule
is the FIFO AVAILABLE bit.

The action of the controller during a write opera·
tion is one of the more complex sequences and
serves as a good illustration of the behavior of the
BUSY and FIFO AVAILABLE bits. Supp'ose a Write
command is sent to transfer an arbitrary number
of pages. Table 10 shows the activity of the con·
troller at various steps in the sequence.

Table 10. Stages of a Write Command

wait for
2 bytes

overhead of FIFO generate swap overhead FIFO
seek data reset

T4 T5
I I

(time line is not to scal~)

Before the Write command i,s sent, the FIFO is in a
general·purpose mode and remains in this mode
until T2. When the command is serit at TO,
the BUSY bit is low and, in fact, the BUSY bit must

'6·26

be low in order for the controller to accept a new
command (except Abort). Sometime between TO
and T 1, the BUSY bit goes high. Thus, between T 1
and T2, the status byte will be 80H.

At T2, the FIFO is internally placed in the "write
mode," and FIFO AVAILABLE changes meaning
from "FIFO has data" to "FIFO has room". For
proper operation, the FIFO must be empty prior to
issuing the WRITE command. This condition can
be guaranteed by using the FIFO Reset command.
Assuming the FIFO is emptY,at T2 the status byte
changes from 80H to 81 H. The status byte remains
at 81 H until T6 (unless the CPU is able to fill the
FIFO in which case, the FIFO AVAILABLE bit tog·
gles between 0 and 1).

At T7 (the completion of the comn;land), the status
byte should be 40H if the CPU did not load data
between T6 and T7. If data was loaded during this
interval, the status value is 41H.

Notice that if ,the FIFO ,contains data when the
Write command is sent, the CPU can, by mistake,
overflow the FIFO during the "seek" portion of the
command. This condition results from the FIFO
AVAILABLE bit being a "1" due to data present in
the FIFO, not because there is room in the FIFO.
While the following diagnostic routines take ad·
vantage of the "preloading" ability of the FIFO,
the examples of operational software at the end of
this application note,do not preload ,the FIFO.

7220 Commands
The 7220 command set consists of 16 commands
identified by a 4·bit command code. The function
of most of the commands is obvious from the
command' name (e.g., Initialize, Abort, Read,
Write). These commands are' adequately describ·
ed in the BPK72 manual. There are, however,
some commands and protocols that merit addi·
tional discussion (specific examples are covered
later in this document).

Table 11. 7220 Commands

03 02 02 01 Command Name

0 0 0 0 Write Booiloop Register Masked
0 0 0 1 Initialize
0 o ; 1 0 Read Bubble Data
0 0 1 1 Write Bubble Data
0 1 0 0 Read Seek
0 1 0 1 ,Read Bootloop Register
0 1 1 0, Wriie Bootloop Register
0 1 1 1 Write Bootloop
1 0 0 0 Read FSA Status
1 0 0 1 Abort
1 0 1 0 Write Seek
1 0 1 1 Read Bootloop
1 1 0 0 Read Corrected Data
1 1 0 1 Reset FIFO
1 1 1 0 MBM Purge
1 1 1 1 Software Reset

Ap·119

In general, all commands sent to the 7220 con
troller must be preceded by the setting of the
parametric registers. While there are some excep
tions as with the Abort command, it is usually
necessary to supply operating information to the
controller via the parametric registers prior to is
suing any command. Since many initial problems I

stem from failing to load the registers prior to is
suing commands, the user software should never
assume that the regsiters contain valid data.

After the bubble system has been powered up, the
7220 controller inhibits (or ignores) all commands
except an Initialize or Abort command. One of
these commands must be sent prior to issuing
any other command. Normally, the first command
issued after loading the parametric registers is'
the Initialize command. This complex command
reads and decodes the bootloop information from
each bubble in the system and places this infor
mation in the bootloop register of the correspon
ding 7242 FSA. Pointers internal to the 7220
automatically are prepared for normal operation.
As described later, the combination of the Abort,
MBM Purge and Write Bootloop Register com
mands is functionally similar to the Initialize com
mand. (The only time the MBM Purge command is
used is in conjunction with the Abort command).

Once the system has been initialized; the re
mainder of the command set can be selected.
Assuming, for example, that a Read command is
to be executed, the user selects the page number
and length of the transfer via the parametric
regisiters and then issues the Read command. If
the system uses the polled mode, the CPU reads
the status register and waits for the BUSY bit to
go active and then for the FIFO READY bit to in
dicate that data is being sent to the FIFO. Data
can be taken from the FIFO until the FIFO READY
bit goes inactive.

If the page selected for the read operation is not in
position to be read (Le., the; page is not 'at the
replicate gates), additional time is required to ex
ecute the Read command as the proper page is
rotated into position. In systems where faster,
response is desired, the Read Seek command can
be used to place the. page into position in order to
free the CPU to perform other tasks. Once the
page is in position, approximately eight
milliseconds are required before the data is
available to the CPU. This latency only occurs on
the first page of a multipage transfer. Similarly,
when a page is not in a position to be written,
Write Seek can be used to position the page at the
swap gates.

If there is any doubt regarding the state of the
FIFO prior to a read or write operation, the user

should issue a FIFO Reset command in order to
clear the 7220's FIFO counter before initiating the
data transfer. If a prior transfer is stopped with
data remaining in the FIFO or if the FIFO is partial
ly filled, the 7220's internal FIFO counter is not
zero, and there is a danger that the subsequent
transfer count may be incorrect. If the FIFO is
reset properly, execution of a FIFO Reset com
mand is redundant.

Although the 7220 FIFO may be treated as a
40-byte RAM buffer, the temptation to "pre-load"
the FIFO with 40 bytes of data and then to issuea
Write I command should be avoided due to the
danger of overflowing the FIFO. Prior to issuing a
Write command, a FIFO Reset command should
be sent, and the parametric registers should be
loaded. Following the Write command, the CPU
should monitor the status byte and wait for the
BUSY and FIFO AVAILABLE bits to go active.
When this status condition occurs, the user soft
ware should then send the proper number of bytes
to the 7220. The FIFO AVAILABLE bit of the status
byte should be polled prior to sending each byte.

An exception to not preloading the FIFO is when a
Write Bootloop, Write Bootloop Register, or Write
Bootloop Register Masked command is used.
Prior to issuing any of these commands, a FIFO
Reset command must be sent before preloading
the bootloop data into the FIFO. When one of the
bootloop-related commands is ,issued, the 7220
controller iml)1ediately begins taking data from
the FIFO. If the FIFO is not preloaded, incorrect
data may be transferred. The operation of the nor
mal Write command differs from the bootloop·
related commands in that, after a Write command
is issued, the 7220 waits for at least two bytes to
be present· in the FIFO before beginning to
transfer data to the bubble.

6-27

If the FSA encounters an error condition during a
read or write operation, the status of the FSA is
reflected in the 7220 status byte. If the user
system decodes the error and decides to con
tinue, the error flags in the 7220 controller and
FSA first must be cleared. To clear the status
bytes, the software can issue, an Initialize com
mand. However, this command resets all of the
current operating parameters in the 7220 con
troller. To continue processing without resetting
the system, the software can use the Software
Reset command. This command resets any error
flags and clears the FIFO, but does not affect the
parametric register fields that define the system
configuration (e.g.,. number of FSA channels
selected).

Ap·119

INSTALLING THE BPK 72 BUBBLE
MEMORY KIT
This section examines the individual cpmponents
of the Bubble Memory System and how each com
ponent can be analyzed_ All elements of the bubo,
ble system need not be working before any mean
ingful diagnostics can be effected. In general, a
user first establishes communication between the
host CPU and the 7220 controller. Next, com
munication with the 7242 formatter/sense
amplifier is verified via the 7220 controller. Finally,
the operation of the 7110 Bubble Memory is
checked. The software that exercises each of
these phases of implementation should be small,
well-defined device drivers that can be controlled
through a system monitor.

The procedures that follow are appl,icable to most
startup problems. The procedures are organized in
chronological fashion and address each step of
the installation process as it would normally oc
cur. Software drivers in 8086 assembly language
are provided to illustrate the basic functions sup
ported by the device drivers.

Powering Up for the First Time
With power removed from the IMB-72 board, insert
all of the supporting integrated circuits with the
exception of the 7110 Bubble Memory Module. In
sert the "dummy module" included in the BPK 72
kit in place of the 7110. The dummy module is
electrically equivalent to the 7110 module and
allows the circuits of the BPK 72 kit to be tested
without the possibility of 'damaging the bubble.
With both the -I' 5V and + 12Vpower supplies
turned off, insert the 1MB 72 with the dummy
module into the edge connector. As power is ap
plied to the system, monitor the RESET.OUT/pin
of the 7220 controller and verify that the signal
goes from low to,high after power is applied. The
low-to-high transition, indicates that the power-up
sequence has been completed successfully.

Communicating With the 7220 Bubble
Memory Controller
The first step in communicating with the 7220 is
to write initial values to the parametric registers
using the code sequence in Table 15_ When the
registers have been set, the code shown inTable
12 can ,be u~ed to examine the ,7220 status byte.

The status value 'returned in Table 12 should be
40H. The user should not continue until the proper
status value can be obtained repeatedly after per
forming the power-up seq'uence. Reading back the
correct status indicates that the host CPU and the

7220 are communicating and that the power-up se
quence is being performed by the 7220. '

Table 12. Reading 7220 Controller Status

RDSTAT:
; THIS PROGRAM READS THE 1220
. STATUS BYTE
; TO READ STATUS, THE HOST CPU MUST
; READ FROM THE 7220 WITH AO = 1.

IN AL,49H ; COMMANDS/STATUS
; PORT ADDRESS OF
; 7220

MOV STATUS, AL ; MOVE AL REGISTER
; TO STATUS

RET

Once the power-up sequence is complete and the
72;20 status register has been read, the 7220 FIFO
can be accessed. The software drivers that write
and read the FIFO are shown in Tables 13 and 14.
Notice that' these code sequences do not send
commmands to the 7220; only data is transferred
to and from the controller. The purpose here is to
test the bus interface and timing between the CPU
and the 7220 controller_ In this case, the 7220
FIFO is used as a general purpose RAM. Any data
can be written to the FIFO, but it is best to use an
easily indentifiable sequence (e.g., an incremen
ting pattern) for easy recognition.

6-28

Table 13. Writing the 7220 FIFO

WTFIFO:
; THIS PROGRAM WRITES 40 BYTES FOR
; MEMORY TO THE 7220 FIFO.
; DATA IS ASSUMED TO BE ATBUFADR.

MOVE SI,BUFADR LOAD BUFFER
POINTER

MOV CX,40 LOAD COUNT
WRT1:

LODSB PUT BYTE AT SI
INTO AL, AUTO INCR
SI

OUT 48H, AL OUTPUT BYTE TO
DATA PORT

LOOP WRT1 DECREMENT COUNT,
LOOP IF NOT 0

,RET

Ap·119

Once forty bytes have been written to the FIFO,
the 7220 status byte should be read. The status
value should be "41H" (indicating that data is in
the FIFO). Other status values such as "parity
error" can be ignored. While status values give·
some indication of the CPU-7220 interaction, the
integrity of the data is more important here. If the
data read back is not the same as the data sent, a
fundamental timing and/or interface problem bet
ween the CPU and the 7220 is indicated.

To verify that data is being transmitted to the
7220, the code sequence shown in Table 14 can be
used to read back the FIFO data into user RAM
space for direct comparison with the original
pattern.

Table 14. Reading the 7220 FIFO

RDFIFO:
; THE PROGRAM READS 40 BYTES FROM
; THE 7220 FIFO INTO MEMORY.

MOV DI, BUFADR ; LOAD BUFFER AD·
; DRESS INTO DI

MOV CX,40 ; LOAD COUNT INTO
; CX

RD1:
iN AL,48H ; INPUT FROM DATA

; PORT
STOSB ; STORE AL AT ADDR

; IN DI, AUTO INCR. DI
LOOP RD1. ; DECREMENT COUNT

;. IN CX, LOOP IF NOT 0
RET

After reading the FIFO, the status byte should be
read (a value of "40H" or "42H," indicating that
the FIFO has no data, should be obtained). The
user should not proceed until the FIFO can be
written and read correctly' and until the, FIFO
status indicates the amount of data in the FIFO
(not empty or empty). These steps verify that the
CPU can communicate with the 7220. Note that no
data has been transferred to or from the 7242 For
matter/Sense Amplifier or the 7110 bubble device
(or dummy module).

Communicating With the 7242
Formatter/Sense Amplifier
The next step in verifying the BPK 72 is to ensure
that the 7220 is driving the 7242 Formatter/Sense
Amplifier properly by first setting up the 7220 for
interaction with the 7242 and then sending com
mands to the 7220 to exercise the 7242 functions
that can be verified easily.

Under normal operating conditions an Initialize
. command is the second command sent to the

system. However, the Initialize command
assumes that the 7110 Bubble Memory is installed
and attempts to read bootloop information. Since
the dummy module is installed at this time, timing
errors result. from the attempted Initialize com
mand. Although no harm resultsfrom using the In
itialize command, an Abort command followed by
an MBM-Purge command can be used in place of
the Initialize command to eliminate timing errors.
The Abort command is sent by executing the code
sequence at label "CMND9" in Table 16. When
Abort command execution is complete, the user
should read the status byte and check for an op
complete indication (40H).

6-29

AP~119

Table 15. Write Register Sequence for Two FSA Channels

WTREG2:; WRITE REGISTERS
; 2 FSA CHANNELs SELECTED.

; THIS IS USED FOR DEBUG TO WRITE/READ THE

; BOOTLOOP REGISTERS AND CHECK FOR MISSING SEEDS, ETC .
. ; THE FOLLOWING VALUES INTO THE 7220 REGISTERS

B = 01 H : 1 PAG'E TRANSFER

C = 10H : SELECT 2 CHANNELS (WH·OLE BUBBLE)

D = 08H : STANDARD TRANSFER RATE

E = OOH : PAGE 0

F = OOH : FIRST BUBBLE

MOV AL,OBH
OUT 49H,AL
MOV AL,01H
OUT 48H,AL
MOV AL,10H
OUT 48H, AL
MOV AL,08H
OUT 48H,AL
MOV AL,OOH
OUT 48H,AL
MOV AL,OOH
OUT 48H,AL
RET

Once the op-complete status is received, the
MBM-Purge command is issued by executing the
routine labeled "CMNDE" in Table 16. This com
mand, as described in the BPK 72 manual, clears
all of the controller registers, counters and ad
dress RAM (except the block length register), the
NFC bits, the FSA present counter and the high
order four bits of the address register. After the
command is complete, the user again should
receive an operation complete indication on
reading the status byte.

; SELECT B REGISTER

; ONE PAGE niANSFERS

; WHOLE BUBBLE (2 FSA CHANNELS)

; LOW FREQ

; START ADDRESS = OOOOH

; FIRST BUBBLE

6-30

After the Abort and M BM-Purge commands are ex
ecuted and is status verified, additional com
mands may be sent to the 7220 BMC. Since the
purpose of this section is to verify the interaction
of the 7242 and 7220, manually loading and
reading the 7242 bootloop registers canbe used
for the verification. Two,additional commands are
required to load and read the bootloop registers:
the Write Bootloop Register command and the
Read Bootloop Register command. These com
mands transfer data between the 7242 bootloop
registers and the 7220 FIFO. Since the ability to
transfer data between user RAM and the 7220

Ap·119

Table 16. 7220 Controller Commands

CMNDS: ; 7220 COMMANDS
; THESE 16 ROUTINES EACH SEND A SINGLE COMMAND TO THE 7220.
; FOR EXAMPLE, THE "INITIALIZE COMMAND" WILL WRITE 11H
; TO THE 7220 WITH AO = 1. THESE ARE THE 7220 COMMANDS LISTED
; IN THE BPK·72 USERS MANUAL.

CMNDO:
MOV AL,10H ; WRITE BOOTLOOP REGISTER MASKED COMMAND
OUT 49H,AL
RET

CMND1:
MOV AL, 11H ; INITIALIZE COMMAND
OUT 49H,AL
RET

CMND2:
MOV AL,12H ; READ COMMAND
OUT 49H,AL
RET

CMND3:
MOV AL,13H ; WRITE COMMAND
OUT 49H,AL
RET

CMND4:
MOV AL,14H, ;READSEEKCOMMAN~
OUT 49H, AL
RET

CMND5:
MOV AL,15H ; READ BOOTLOOP REGISTER COMMAND
OUT 49H,AL
RET

CMND6:
MOV AL,16H ; WRITE BOOTLOOP REGISTER COMMAND
OUT 49H,AL
RET

CMND7:
MOV AL,17H ; WRITE BOOTLOOP COMMAND
OUT 49H, AL
RET

CMND8:
MOV AL,18H ; READ FSA STATUS COMMAND
OUT 49H, AL
RET

CMND9:
MOV AL,19H ; ABORT COMMAND
OUT 49H, AL
RET

CMNDA:
MOV ' AL,1AH ; WRITE SEEK COMMAND.
OUT 49H, AL
RET

CMNDB:

6-31

Ap·119

Table 16. 7220 Controller Commands (cont.)

MOV
OUT
RET

CMNDC:
MOV
OUT
RET

CMNDD:
MOV
OUT
RET

CMNDE:
MOV
OUT
RET

CMNDF:
MOV
OUT
RET

AL,1BH
49H,AL

AL,1CH
49H, AL

AL,1DH
49H, AL

AL,1EH
49H, AL

AL,1FH
49H,AL

FIFO has been verified previously, these two addi
tional commands verify the system's ability to
transfer between user RAM and the 7242 FSA.

The 1220 parametric registers must be loaded·
prior to sending the Write Bootloop Register com
mand. The sequence of operations is important;
loading the parametric registers destroys the first
byte of data in the 1220 FIFO, If valid bootloop in
formation is placed in the FIFO before the
parametric registers are loaded, the first byte of
bootloop register information is invalid. Accor
dingly, the sequence of operations must be as
follows:

(1) load the 7220 parametric registers
(2) load bootloop data into the 7220 FIFO
(3) send the Write Bootloop Register command.

As a point of interest, if a user wishes to maintain
the system bootloop in EPROM rather than to
allow automatic handling by the system,the In
itialize command would not be used and would be
replaced by a sequence similar to the one describ
ed.

. After the 7220 parametric registers are loaded, the
CPU next must load the 7220 FIFO with 40 bytes
of bootloop register data using the "write FIFO"
sequence from Table 13. This sequence then is
followed by the code sequence to issue the Write

: Bootloop . Register· command. The data pattern

; READ BOOTLOOR COMMAND

; READ CORRECTED.DATA COMMAND

; FIFO RESET COMMAND

; MBM PURGE COMMAND

; SOFTWARE RESET COMMAND

written to the bootloop register should be an easi
ly identified sequence of bytes such as an in
crementing pattern. Under operational conditions,
the data written to the bootloop registers
represents "loop map" information that is written
on the label of the 7110 device. Under these test
conditions, it only is necessary to ensure that the
40 bytes sent out are the same 40 bytes read back.

Once the Write Bootloop Register command has
been sent, the status byte is read (when the BUSY
bit goes low) and an operation-complete status is
verified. Any parity error indication may be ig
nored. Valid status at this pOint indicates that
communication with the 7242 has been establish
ed. To verify that the data has been transferred
properly, the contents of the bootloop register are
read into the 1220's FIFO. The CPU then must
transfer the data to user RAM in order to cOmpare
the data with the original pattern. To read the
bootloop register, it only is necessary to issue the
Read Bootloop Register comm·and. This cqm
mand places the contents of the 1242's bootloop
register into the 7220's. FIFO. The user then must
execute the "read FIFO" sequence from Table 14
in order to transfer the data from the 7220 FIFO to
RAM. Comparing the loop map written into the
bootloop register and the loop map read from the
bootloop register should show the loop maps to
be equal.

6-32

Ap·119

Installing the 7110 MBM

Reading and writing the 7110 bubble memory re-.
quires the application of specific control signals
at the appropriate times within the read or write
cycles. These control signals originate from the
7254 and 7230 integrated circuits and are.
generated under the control of the 7220 BMC.
Prior to installing the 7110, the presence of the
control signals should be verified., While it is
unlikely that the 7110 can be seriously damaged, it
is possible for the "seeds" and bootloop
established at the factory to be lost if there are
problems with the 7254 or 7330 control signals
and, if lost, would require additional steps on the
part of the user to regenerate the seeds and
bootloop data. With the dummy module installed,
the required control signals can be verified direct
lyon the bubble socket, and the possibility of
damaging the bubble can be avoided.

The first control signal waveform to check isJhe
coil drive on pins 9, 10, 11, and 12 of the 7110
socket. The dri.ve current can be verified by ensur
ing that the voltage waveform on these pins (or on
pins 1 and 7 of the 7254) conforms to Figure 6A
when the drive field is being rotated. To rotate the
drive field, the following code sequence can be
used:

1. Write the parametric registers.
2. Send the Read command.

Next, the "cut and transfer" pulses generated dur
ing a read operation should be checked. The
waveforms on pins 2 and 3' of the 7110 socket
(REPLICATE.A and REPLICATE. B), should appear
as shown in Figure 6B. .

The cut and transfer pulses that occur during a
write operation should now be verified. The
waveforms on pins 7 arid 8 of the 7110 socket
(GENERATE. A and GENERATE. B) should appear
as shown in Figure 6C. Since a write operation is
required, a new code sequence must be used for
this test: .

·1 .. Write the parametric registers.
2. Write data (any patten) to .the FIFO.
3. Send the Write command.

bootloop register of the 7242 first must be loaded
to allow data to be written. A Write Bootloop
Register Masked command can be used to write a
bootloop register pattern of all ones; it is only
necessary to write the boot loop register once.

Finally, the SWAP pin is tested for proper opera
tion du ri ng a. write operation. The waveforms on
pins 13 and 14 of the 7110 (SWAP.A and SWAP.B)
should appear as shown in Figure ·60. The code
sequence described for a write operation may be
used ..

One additional check of the system should be
made prior to installing the 7110 device to deter
mine if valid status values are received after a
Read or Write command is issued to the 7220
BMC. Since the bubble is not yet installed, no data
actually is transferred; the system should,
however, execute the Read or Write command,
and valid status should be received. Since a new
command cannot be issued to the 7220 while a
command is in progress, an Abort command is
sent to cancel any command that may be pending
from the last test performed. Next, a FIFO Reset
command is sent to clear any data remaining in
the FIFO. The status byte received should in
dicate an OP-COMPLETE and FIFO AVAILABLE
status condition. The 7220 now is ready to ex
ecute a Read or Write command.

First, the 7220 parametric registers are loaded us
ing the modified "diagnostic" driver shown in
Table 17. This routine selects one FSA channel
(half of a bubble) and, with ECC disabled, requires
the loading of only 34 bytes in the 7220 FIFO. By
limiting the FIFO to less than 40 bytes, FIFO
underflow/overflow conditions are eliminated, and
timing errors are avoided in the status byte. After,
the 7220 FIFO is preloaded with 34 bytes of data
(any pattern), a Write command is issued to the
7220 BMC. The 7220 status value received follow
ing command execution should reflect OP
COMPLETE .sirice the.7220 transferr!3dtl'ie' data
from its FIFO to the 7242 and executed the Write
command as though 'the, bubble were in pi ace ..

. . ' ,

6-33

Ap·119

A: PINS 9, 10, 11, 12

B:

c:

D:

PIN 2, 3
(DURING READ)

PIN 7, 8
(DURING WRITE)

PIN 14,13.
(DURING WRITE)

+12V

OV

+12

12V

~ + 10.3V

12V

~ + 4.3V ~28.75 ~s
(Noldrawn 10 scale)

Figure 6 .. Control Signal Waveforms

To.test thE! system in the read mode,the 7220
parametric registers are reloaded and a Read com
mand is issued to the 7220. The. user software
must now read 34 bytes of "data" from the 7220'S
FIFO. Note that the data read will consist of all
zeroes since no bubble is in place.

When the system completes all of the previous
tests successfully, the 7110 bubble memory
device may be inserted. Before proceeding,
REMOVE POWER FROM THE SYSTEM.

6-34

Installing the 7110 is no differeht from installing
any other device. Remove the dummy module in
the 7110 socket and insert the 7110 Bubble
Memory~ Note that the 7110 is keyed to prevent
the device from being inserted incorrectly. When
power is applied, the system should execufe its
power-up sequence as described for the dummy
module, and the 7220 status byte should return
OP-COMP.LETE after tl:le parametric registers
have been loaded.

Ap·119

Table 17. Write Register Sequence for One FSA Channel

WTREG1:; WRITE REGISTERS (ONE HALF BUBBLE)

THIS PROGRAM WRITES THE 7220 REGISTERS "B" THROUGH "F".
DIAGNOSTIC ROUTINE WITH ONE FSA CHANNEL SELECTED
THE FOLLOWING VALUES ARE WRITTEN TO THE 7220 REGISTERS.

B =01 H : 1 PAGE TRANSFER
C = OOH SELECT 1 CHANNEL (HALF BUBBLE)
D = 08H LOW FREQ ,
E = OOH .. PAGE 0
F = OOH FIRST BUBBLE

MOV
OUT

AL,OBH
49H, AL

; SET REGISTER ADDRESS COUNTER (RAC) TO B REGISTER
; PROT ADDRESS ·OF 7220 WITH AO = 1

MOV
OUT

AL,01H .
48H, AL

; SET B REGISTER TO 01H (ONE PAGE TRANSFER)
. ; PORT ADDRESS OF 7220 WITH AO = 0

MOV
OUT

AL,OH
48H,AL

; SELECT HALF BUBBLE (1 FSA CHANNEL)' ..

MOV
OUT
MOV
OUT.

AL,08H
48H,AL
AL,OH
48H, AL ..

; SELECT LOW FREQ (NO ERROR CORRECTION)

; START ADDRESS = OOOH

MOV
OUT
RET

AL,OH
48H, AL

; SELECT THE FIRST BUBBLE

Normal Read and Write Operations
Under normal operating conditions, a user sends
an Initialize command and then proceeds to ac·
cess the bubble. The Initialize command
automatically purges the RAM area of the 7220,
reads and decodes the bootloop on the 7110, fills
the 7242 bootloop registers, and places the 7110
at page O. This very important command is the
next command to be tested before reading and·
writing data.

To verify the Initialize command, load the 7220
parametric registers to select both FSA channels
for one bubble and then send the Initialize com·
mand~ Status following execution of this com
mand should be 40H, OP-COMPLETE. Once the
7220 is initialized, data can be transferred to and
from the bubble. For a first attempt, it is recom
meded that the operations be kept simpie. That is,
avoid error correction, DMA, or interrupts and only
attempt single page transactions until reasonably
familiar with the basic operations.

6-35

Prior to issuing the Write command, a FIFO Reset
command is sent and then the parametric
registers are loaded to select the page address
and number of FSA channels. After the Write com
mand is sent, the data should be output to the
7220 FIFO. When the proper number of bytes have
been t~ansferred, the 7220 status byte should
reflect OP-COMPLETE and FIFO AVAILABLE to
indicate that the data has been written into the
7110 bubble memory and can now be read. To read
back the data written, issue a FIFO Reset com
mand and reload the parametric registers to select
the same page address in which the. data was writ
ten. Issue the Read command to move the data
from the 7110 to the 7220 FI FO and then use the
"read FIFO" routine to transfer the data to user
RAM. As always, the 7220 status byte should be
checked after the operation.

AP·119

AN IMPLEMENTATION EXAMPLE
To illustrate the ease with which Intel's bubble
memory solution may be implemented, an MCS~86
System Design Kit (SDK-86) is used as a vehicle to
control a single BPK 72 bubble memory kit.

The bus interface between the 8086 CPU and the
7220 bubble memory controller requires seven in
tegrated circuits and consists of four sections: ad
dress decode, data bus decode and buffering, a
clock circuit, and miscellaneous 'control logic.
The system requires power supply voltages of
+ 12V, + 5V, and, if a CRT is used, -12V.

The 8086 bus is expanded through two 50-pin,
wirewrap connectors, and the BPK 72 is con
nected to the SDK-86 by a flat cable into a 40-pin '
connector located on the SDK-86. The following
interface diagram shows how the signals required
by the bubble system are derived from the 8086.
Detailed diagrams of the address, data, clock and
control logic are in the appendix.

Either the SDK-86's Keypad or Serial monitor may
be used to write and debug the necessary soft
ware drivers to control the BPK 72. There is,
however, an EPROM-based monitor (BMDSDK) ex
plicity designed for the BPK 72 and is available
from the Intel Insite Library. Some of the bubble
specifiC portions of this monitor are discussed in
the following text.

Monitor Software
The BMDSDK BubbleMonitor is a highly,modular
program that is written in 8086 assembly language
and that resides in two 2716 EPROMs. This
monitor'imp!ements, at the console level, most of
the standard SDK-86 monitor functions
(display/change memory, etc.) and all of the 7220
commands. The current version of the monitor
utilizes only polled I/O protocol; implementing an
interrupt-driven system on the SDK,86 is possible

using the principles outlined in this application
note. The DMA mode of operation is not available
with the hardware described.

The BPK 72 driver routines are confined to one
module; a listing of this module is included in the
appendix. To provide some feeling for the
elements of "operational" software as opposed to
the test drivers discussed earlier, the write func
tion implemented in BMDSDK monitor is examin
ed. The flow chart in Figure 9 shows how the
routine is constructed on a functional basis. Note
that the subroutine reflects a very "safe" ap~
proach in that the FIFO Reset command always is
sent prior to issuing the Write command. While
the FIFO Reset command is not mandatory, if
there is any a doubt regarding the state of the
FIFO prior to a read or write operation, resetting
the FIFO is a good idea. Note also that a running
byte count is maintained and that the routine exits
when the count goes to zero. Such a counter is not
actually necessary; the FIFO AVAILABLE bit
alone can be used to gate the data to the 7220.

Thecalling program supplies the BMWRIT routine
with the total number of bytes to be transferred in
the CX register. The total number of bytes written
is sent to the console at the end of the operation
as a monitor function. BMWRIT also returns the
value of the status byte to the calling program.

Note that at label WRIT01, the ,routine does not
progress after the Write command.Is sent unless
both the BUSY and FIFOAVAILABLE bits are set
by the controller. Once these values are set, the
code issues a byte of data to the controller only if
the FIFO AVAILABLE bit indicates there is room.
The remainder of the code in BMWRIT is concern
ed with processing special write requests for the
bootloop and bootloop register commands.

6-36

BPK 72

nat
cable·

Ap·119

+12V

Jt

J8

J3

Figure 7. SOK·86/BPK 72 Implementation

6-37

GND +5V -12V

J7

SDK·86

1------,
I KEYPAD I
I I L _____ ..J

SDK·86
SIGNALS

BDO - BD15

BDTIR

BHEI

~

"

INTRO

BRD/O

BWT/O

RESET 0
OUT

I 16
,

Ii

I 1

I
I 15

14

I 1

/f
,

Ap·119

USER
HARDWARE

DATA BUS
BUFFERS

AND
DECODING

lOGIC

ADDRESS
DECODE
lOGIC

CLOCK
CIRCUIT

.~

4
~

(>o~

+5V' I

+12V}

-1l

4

/1

~

Figure 8. SDK·86/BPK 72 Interface Diagram

6·38

I
I

I

I
I

I
I

I

I

I

I

I

I

I

BPK72
SIGNALS

CSI (7220)

AO

o ClK

OINT

o RDI

OWRI

o RESETI

~ DACKI

WAITI

CSI (7242)

Vee

~ Voo

GND

INPUT
STP-TUS

INPUT
STATUS

COMPUTE
BYTES

TRANSFERRED

AP·119

. Yes

Figure 9. BMWRIT Flowchart

'6-39

Ap·119

Table 18. BMWRIT Procedure for the SDK·86

FUNCTION: BMWRIT· WRITE BUBBLE MEMORY DATA.
INPUTS: CX = # OF BYTES TO WRITE.
OUTPUTS: A = STATUS: F/F(C= 1: ERROR OCCURED) BX=# OF BYTES WRITTEN.
CALLS: SNDREG, BMWAIT.
DESTROYS: ALL.
DESCRIPTION: THIS PROCEDURE PERFORMS A BUBBLE MEMORY WRITE OPERATION.

AN ERROR WILL OCCUR IF THE NUMBER OF BYTES GIVEN FOR THE
WRITE OPERATION EXCEED THE NUMBER THAT THE BMC EXPECTS
(DERIVED FROM COMMAND, BLOCK LENGTH AND NUMBER OF FSA
CHANNELS), OR IF THE NUMBER OF BYTES IS LESS THAN THAT
WHICH THE BMC EXPECTS.

BMWRIT:
XOR
MOV
MOV
MOV
OUT
CALL
MOV
MOV
OUT

AL, AL
STATUS,AL
BX,CX
AL,CFR
BMSTAT, AL
SNDREG
SI, BUFADR
AL, BMCMD
BMSTAT, AL

; A = 0
; CLEAR STATUS

; FIFO RESET
; SEND REGISTERS TO BMC.
; SET UP SRC BFR PTR (IN DATA SEG)
; GET COMMAND .
; ISSUE IT.

WRlT01:

,

IN
TEST
JZ
TEST
JZ

AL, BMSTAT
AL, BUSYBT
WRIT01
AL, FIFOBT
WRIT01

; WAIT FOR BUSY ...

; AND FIFO READY·

KEEP STUFFING DATA INTO FIFO UNTIL DONE OR AN .ERROR-OCCURS.
(NOTE: BMC GOING NOT BUSY IS AN ERROR).

WRIT03:
IN
TEST
JZ
LODSB
OUT
LOOP
JMP

AL, BMSTAT
AL, FIFOBT
WRIT04

BMDATA, AL
WRIT03
BMWAIT

; GET STATUS
; FIFO READY?
; NO, WAIT FOR IT
; YES,GET DATA FOR IT
; GIVE IT TO BMC
; LOOP UNTIL DONE.
; XFER DONE, WAIT FOR A GOOD STATUS

WRIT04:
TEST AL,BUSYBT
JNZ WRIT03 . ;OK IF STILL BUSY
SUB BX, CX ; BX:# OF BYTES XFERED
JMP CTRL99 ; ERROR IF NOT BUSY AND CX NOT ZERO

SPECIAL WRITE FOR BOOTLOOP AND BOOTLOOP REG.CMNDS
,
BMWRTB:

XOR
MOV
MOV
MOV
OUT
CALL
MOV

AL,AL
STATUS,AL
BX,.CX .
AL,CFR
BMSTAT, AL
SNDREG
SI, BUFADR

; FILL FIFO WITH 20/40/41 BYTES

; A = 0
; CLEAR STATUS

FIFO RESET
SEND REGISTERS TO BMC.
SET UP SR<;: BFR PTR (IN DATA SEG)

6-40

Ap·119

Table 19. BMWRIT Procedure for the SDK·8S (cont.)

SUMMARY

,
WRTB01:

LODSB
OUT
LOOP
IN
TEST
JZ
MOV

WAITPO:

BMDATA, AL
WRTB01
AL, BMSTAT
AL, BUSYBT
SHORT WAITEX
CX,OFFFFH

IN AL, BMSTAT
TEST AL,BUSYBT
LOOPNZ WAITPO
JCXZ 'CTRL99

WAITE: '
MOV
RET

STATUS,AL

The purpose of this application note is to provide
a more clear understanding of the functions and
characteristics of the BPK 72 one-megabit bubble
memory kit. This kit has been designed specifical
ly to rei ieve the user of the design effort that
historically is associated with implementing a
bubble memory system, and to provide a simple
interface that is compatible with a broad range of
microprocessor systems.

6·41

; STICK IN FIFO.
; LOOP UNTIL FILL COUNT=O.
; GET BMC STATUS
; CHECK BUSY BIT.
; NOT BUSY, ALREADY DONE.
; JUST IN CASE. ..
; POLLED WAIT MODE
; GET STATUS
; CHECK BUSY BIT
; LOOP IF STILL BUSY
; PROBABLY AN ERROR IF CX=O

; A = STATUS

The BPK 72 is a subsystem in itself that should be
viewed as simply one more component on the
system bus: This component-level approach, plus
the inherent flexibility of the kit, provides the user
with maximum utility and functionality. By
understanding how each of the subsystem parts
fits together and by approaching the implementa
tion of the kit in a methodical fashion as describ
ed in this note, the development of a working
system is facilitated.

Ap·119

, .,' , ; "",
',',' ,,/'

APPENDIX A

SDK·86/BPK 72

" ~_ARDWARE INTERFACE
" ',','

',.:,

,", \1 :r. , .

,,; ,.

6-42

I

40 39

2 1

J8

AP·119

SDK·86 EXPANSION AREA

50 49

B
-

U5

-

G -

U4

GJ -
2 1

B 50 49

B
B

2 1

Top View User Hardware Section

Figure 10. Parts Layout

6-43

J1

J3

BOO (J1-2)

B01 (J1-4)

B02 (J1-6)

B03 (J1-8)

B04 (J1-10)

B05 (J1-12)

B06 (J1-14)

B07 (J1-16)

B,08 (J1-18)

B09 (J1-20)

B010 (J1-22)

B011 (J1-24)

B012 (J1-26)

B013 (J1-28)

B014 (J1-30)

B015 (J1-32)

BOT/R (J1-48)

BHEI (J3-2)

-
"--,.. -,..
"--
-
-
-

,..

-,..
,..

-
-
..... -
.....
':""

.....

-

1

2

3

4

5

6

7

8
:

1
.-

2

3

4

5

6

7

8

8286 - vee =: 20

Gnd =' 10

111 9

T 'c. OE

U5

INTEL

8286

U4

INTEL

8286

T OE

111 9

AP·119

./

19
t--..
18 ..
t-- t--
17

16

15

14

13

12

i

19

.. 18

17

16 ...

15

14

13

1'2'

1

2
U6

Figure·11_ Data·Bus Buffer and Decoding Logic

. ~, ',; ,

6-44

-
: r-

. -
-"

J'\ -
-
-
-

00 (J8-22)

01 (J8-24)

02 (J8-26)

03 (J8-28)

04 (J8-30)

05 (J8-32)

06 (J8-34)

07 (J8-36)

Ap·119

AO (J3·4) O~----------------<OAO (J8-18)

M (J3·S)

A2 (J3·8)

A3 (J3-10)

A4 (J3·12)

AS (J3·14)

AS (J3·1S)

A7 (J3·18)

BMJIO (J3·44)

A8 (J3·20)

A9 (J3·22)

A10 (J3·24)

A11' (J3·2S)

J'.12 (J3·28)

A13 (J3-30)

A14 (J3·32)

A1S (J3-34)

,...
,... -,... -

-,... -,..,
-
0-

,... -,... -,... -,...
-,... -
-
-

1 U2

:2
AO

A1
3

A2 14
4 820S 01

E1
I'"'

S-
-" E2

S
E3

~
~

1
AO

U1.

2
A1

3
A2 ,.!!.. 4 820S OS ,- E1

S."
E2

1 S I E3

13

'12J
- 8 10 J ~

'91 r--v;U3
I

1~

2J
S

'" 4 ,/-
SI~U3

Figure 12. Address ,Decode Logic

6-45

-CS (7220)
(J8·40)

Ap·119

R3,

S.1K

a 0 5

U6

R1 5100
"

R2
12 5100

C1T
U6

"~~T56,PF
56pF

I

BRDI (J3.46)O~------'-"'-"------"'----'----,ORDI (Ja·12) ,

BWRI (J3·48)0 0 WRI (Ja·16)

INTR (J1·3a)OO INT (Ja·20)

3, '--'-4_-----'-_-,--__
RESET OUT (J1·34) O-------Ivu- 0 I'IESETI (Ja·10)

U6

5.1K
Rs ",

5.1K

....
"

+5V

.......

./ +12V

..
WAIT (Ja·14)

DACKI (Ja·,6) ,

CS/(7242)
(Ja·s)

Vcc'(ja.a)

VDD (Ja·2, 3a)

+SV

ClK
(Ja·4)

C6 l
I r C3.C5 GND(Ja·1, 3,,27, 37,39)

--

Figure 13. Clock Circuit and Control Signals

6·46

Table 20. SDK·86 Pinout

Pin J1/J2 J3/J4 J5
2 BOO BHE! P2C1
4 B01 AO P2C2
6 B02 A1 P2C3
8 B03 A2 P2B7
10 B04 A3 P2BO
12 B05 A4 P2B6
14 B06 A5 P2B3
16 B07 A6 P2B4
18 B08 A7 P2B2
20 B09 A8 P2B5
22 B010 A9 P2B1
24 B011 A10 P2CO
26 B012 A11 P2C4
28 B013 A12 P2C5
30 B014 A13 P2C6
32 B015 A14 P2C7
34 RESET OUT A15 P2AO
36 PCLKI A16 P2A7
38 INTR A17 P2A1
40 TEST A18 P2A6
42 HaLO A19 P2A2
44 BHLOA BMIIOI P2A5
46 BOENI BROI P2A3
48 BOT/RI BWRI P2A4
50 BALE BINTAI -

Ap·119

J6
-

P1B3
P1B4
P1B2
P1B5
P1B1
P1B6
P1BO
P1B7
P1C3
P1C2
P1C1
P1CO
P1C4
P1C5
P1C6
P1C7
P1AO
P1A7
P1A1
P1A6
P1A2
P1A5
P1A3
P1A4

Table 21. SDK·86/BPK 72 Cable Wiring

Signal
+ 12v
+5v

Ground
00·
01
02
03
04
05
06
07

CSI (7220)
AO
ROI
WRI
INT

RESETI
CSI (7242)

WAITI
CLK

OACK!

J8
2,38

8
1,3,27,37,39

22
24
26
28
30
32
34
36
40
18
12
16
20
10
5
14
4
6

P1
B,X

F
1,A,P,22,Z

11
12
13
14
15
16
17
18
Y
10
J
K
N
H
E
8
4
L

Cable is standard 40 conductor Flat Cable.
All Odd Condu·ctors are grounded at J8_

All Odd Pins are Ground except as follows:

J2
41 CSXI (FOOOO-FDFFF)
43 CSYI (FCOOO-FCFFF)
45 BS3
47 BS4
49 BS5

Table 22. SDK·86/BPK 72 Parts List

Item Description aT Ref

1 1C-8205 - Bindry Decoder 2 Ul, U2 Intel (TI-74LSI3)
2 IC-8286 - Octal Bus Tranciever 2 U4, U5 Intel
3 IC-746525 - Dual 4 Input M U3 Any
4 IC-74H04 - Inverter 1 U6 Any
5 Resistor 5100 1I4w 2 Rl, R2 Any
6 Capacitor, 56pF 25V 2 Cl,C2 Any
7 Capacitor, .1 pF 25V 4 C3-C6 Any
8 Crystal, 8.000 M Hz Serie Res. 1 VI Any
9 Connector, 50 pin wirewrap 2 Jl, J3 3M # 3433
10 Connector, 40 pin wirewrap 1 J8(M) 3M # 3432
11 Connector, 40 pin 1 J8 (F) 3M # 3417
12 Connector, 44 pin Edge w/w 1 PI Any
13 IC Socket, 20 pin w/w 2 Any (Augat)
14 IC Socket, 16 pin w/w 3 Any
15 IC Socket, 14 pin w/w 3 Any
16 Adapter Plug Assembly, 16 pin 1 Augat#616-CEI
17 Flat Cable, 40 Conductor, 1 Ft. 3M # 3365
18 IC-74LS74 - Dual D Flip-Flop 1 07 Any
19 Resistor 5.1 K 1/4 W ± 5% 3 R3, R4, R5 Any

R5
20 IC-74LS32 - OR Gate U8 Any

6-47

Ap·119

APPENDIX B .

SDK·86/BPK 72

SOFTWARE DRIVER

s:.48

0>
.i:;.
<0

M S-86 MACRO ASSEMBLER BPK-72 DRIVER ROUTINES.

ISIS-II MCS-86 MACRO ASSEMBLER V2.1 ASSEMBLY OF MODULE DRIVER
OBJECT MODULE PLACED IN :Fl:DRIVER.OBJ
ASSEMBLER INVOKED BY: asm86 :fl:DRIVER.a86 xref print(:fl:DRIVER.lst) debug WORKFILES(:FO:.:FO:)

LOC OBJ

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
OOlA
001B
001C
001D
001E
001F

=1
= 1
=1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
=,1
=1
=1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1
= 1

= 1
= 1
=1
= 1
=1
:,
= 1
=1
=1
=1
= 1
= 1
= 1
=1
=1
= 1
= 1
= 1
=1
= 1

LINE

1
2
3 +1
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 +1
3;
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

SpURCE

$TITLE (
NAME DRIVER

BPK-72 DRIVER ROUTINES.)

$INCLUDE(:Fl:RAMDEF.EXT)

STACK

STACK

DATA

DATA

publics from module RAMDEF, file RAMDEF.A86

SEGMENT STACK
EXTRN BMSTAK:NEAR
ENDS

SEGMENT
EXTRN
EXTRN
EXTNN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
ENDS

PUBLIC
RAM:BYTE.SCRBUF:BYTE.MYBUF:BYTE
DEFADR:WORD,DEFBUB:BYTE.DEFNFC:BYTE,DEFENA:BYTE
DEFMOD:BYTE,DEFPAG:WORD,DEFBLK:WORD
BUFADR:WORD,BLKLEN:WORD,ENABLE:BYTE,PAGENO:WORD
EBLNUM:BYTE,NFC:BYTE,MODE:BYTE,STATUS:BYTE.BMCMD:BYTE
INBUF:BYTE,INBUFP:WORD,INBUFC:BYTE
INBUFA:WORD,INBUFL:BYTE
OUTBUF:BYTE,OUTBFP:WORD,OUTBFC:BYTE
OUTBFA:WORD,OUTBFL:BYTE
RDLEN:WORD,WRLEN:WORD
PROMPT:BYTE,LEVMSK:BYTE
BPADR:WORD,USERRG:WORD
POPREGS:WORD,PUSHREGS:WORD
USERBX:WORD,USERDS:WORD,USERBP;WORD,USERSS:WORD
USERSP:WORD,USERIP:WORD,USERCS:WORD,USERFL:WORD
USERPC:WORD

$INCLUDE(:Fl:BMC.EQU)

THESE ARE THE COMMAND EQUATES FOR BMDS
,
CWBR!!
CIZ
CRD
CWD_
CRS'
CRBR
CWBR
CWB
CRFS
CAB
CW'RS
CRB
CRCD
CFR
CPURG
CSR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

lOR
llH
12H
13H
14H
15H
16H
17H
iSH
19H
lAH
lBH
lCR
lDH
lEH
lFH

, WRITE BOOT LOOP WITH 'MASK.
;INInALIZE
;READ
;WRITE
;READ SEEK
;READ BOOT LOOP REGISTER
;WRITE BOOT LOOP REGISTER
;WRITE BOOT LOOP
;READ FIFO STATUS
;ABORT
; WRITE SEEK'.
;READ BOOT LOOP
;READ CORRECTED DATA
; FIFO RESET '
; MBM PURGE COMMAND.
;SOFTWARE RESET

PAGE

):0
"C .:..
CO

MCS-86 MACRO ASSEMBLER BPK-72 DRIVER ROUTINES. PAGE 2

LOC OBJ LINE SOURCE

= 1 51 ; 1/0 PORT ADDRESSES.
= 1 52

BMSTAT OOEI = 1 53 - EQU OE1H BUBBLE MEHORY DEVICE STATUS PORT.
OOEO = 1 54 BMDAT! EQU OE08 BUBBL& MEMORI DEVICE DATA PORT.

= 1 55 · = 1 56 ; STATUS WORD BITS
;, 1 57 · 0001 = 1 - 58 FIFOBT EQU 018 FIRST BIT IS FIFO STATUS

0002 = 1 59 PARERR EQU 028 SECOND BIT IS PARITY ERROR.
0004 =1 60 UNCERR EQU 048 THIRD BIT IS UNCORRECTABLE ERROR BIT.
0008 =1 61 COR ERR EQU 088 FOURT8 BIT IS CORRECTABLE ERROR BIT.
0010 =1 62 TIMERR EQU 108 FIFTH BIT IS TIMING ERROR BIT.
0020 =1 63 OPFAIL EQU 20H OPERATION FAIL BIT.
0040 = 1 64 OPDONE EQU 408 OPERATION COMPLETE BIT.
0080 =1 65 BUSIBT EQU 808 BUSY BIT.

= 1 66 · = 1 67 ; ENABLE REG BITS
=1 68

0001 =1 69 INTENA EQU 018 INTERRUPT NORMAL
0002 = 1 70 IERENA EQU 028 INTERRUPT ERROR
0004 =1 71 DMAEHA EQU 048 DMA
0008 =1, 72 RSVDl EQU 088
0010 =1 73 WBLENA EQU 108 WRITE BOOTLOOP
0020 =1 74 RCDEHA EQU 20H READ CORRECTED DATA)0
0040 =1 75 ICDENA EQU 408 INTERNALLY CORRECTED DATA "tI cp 0080 ,,1 76 RSVD2 EQU 80H .:.. (11 77 +1 ,EJECT 0

CO

cp
~

M S-86 MACRO ASSEMBLER

LOC OBJ LINE

78
79
80
81
82
83
84
65
86
57
86
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 +1

BPK-72 DRIVER ROUTINES.

SOURCE

CODE SEGMENT PUBLIC
ASSUME DS:DATA,CS:CODE,SS:STACK

;'~'*'11.' •• "".1'6'1'1~~".""'*"".".""".1'11 I' .. '"
BPK72 DRIVER routines

The routines 1n this module constitute the routines
needed to directly drive the BPK72 bubble memory
development board. This module 1s designed to be self
contained, and may be called by ,ANY user procedures.

The procedures in this module are

BMCTRL - Perform non-data transfer-BHe operations.
BMREAD - Perform data read BHe operations.
BHWRIT - Perform data write SHe operations.

ZAPR~G - Set internal registers to an acceptable value

Parameter passing

All parameters are passed to the BHe driver routines via
common (PUBLIC) variables. These variables are

a

•

a
BUFADR - The memory addre •• of the input/output buffer a

to be used for data transfer operations.
,ENABLE - The enable byte to be passed to the BMC before a

every- operation. I
PAGENO - The starting blook number to be passed to the

BHC before every operation, (NOTE: This field
has no meaning for control operations). I

BLKL&N - The number of pages to be transfered by the BHC.·
(NOTE: This field has no meaning for oontrol a
operations) . •

BBLNUM - The bubble seleot to be transfered to the BMC
before everv operation,(NOTE: This field has a
no meaning for SOME control operations). I

NFC - The number of FSA ohannels passed to the BMC
before every operation, (NOTE: This field has
no meaning for SOME of the control operatioNs), a

For,a detailed definition of the ENABLE,PAGENO.BLKLEN,
BBLNUM. and NFC fields, refer to the BPK-12 USER MANUAL a
or the Bubble Memory Design Handbook. •

; ,
a

;"'~""""'I"""""""""""'.""I""""" •••••••
.EJECT

PAGE

»
"U .:..
CD

'!' en
I\)

H 8-86 HACRO ASSEHBLER

LOC OBJ

OOOB
003C

LINE

127
128
129
130
131
132
133
13'4
135
136
137
138
139
1'40 +1

BPK-72 DRIVER ROUTINES. PAGE

SOURCE

; .•....••....•...••••..••.••••.
ENTRY POlNTS

PUBLIC ZAPREG.BHCTRL~BHWAIT.BHREAD.BMWRIT.BHWRTB . ; •••••••••• ~I~~.* ••• ~ ••

HISC EQUATES

REGl EQU
STATER EQU

$EJECT

-OBH
3CH

·FIRST SMC ·REGIST·ER TO USE IS BLOCK LENGTh
·STATUS woiiD· ERROR HASK

i.iGNORE .PARITY ERR. REV D OF BHC

l>
"tJ .:..
..;.,.
(Q

~

M S-86 MACRO ASSEMBLER

LOC OBJ

0001
0002
0080

LINE

HI
i~2
1~3
1.~~
1~5
1~6
1 ~.7
1~8
1~9
150
151
152-
153
15~ +1

BPK-72 DRIVER ROUTINES.

SOURCE

; !i.~ ••••••••••

MODE BY-TE DEFINITION

The bits in the. MODE BYTE sDecify the tYDe of the data transmission
TO USE, AND WHETHER TO PRINT STATUS AFTER EACH OPERATION.
If interrupts are enabled in the MODE BYTE, they must also be selected
in the ENABLE BYTE for desired operation to occur·.

PAGE

INTMOD EQU
DMAMOD EQU
DBGMOD EQU
$EJECT

01H
02H
80H

FIRST BIT IN MODE WORD IT INTERRUPT SELECT.
SECOND BIT IN MODE WORD IS DMA SELECT.
DEBUG BIT OF MODE WORD

5

:I>
."
.:..
CD

~

M S-86 MACRO ASSEMBLER

LOC OBJ

0000
0000 E8D700
0003 AOOO·OO
0006 E6El
0008 E80EOO
OOOB 243C
OOOD AOOOOO
0010 7502
0012 F8
0013 C3

0014
0014 A20000
0017 F9
0018 C3

001.9

0019 E4El
001BA880
001D 740B
001F B9FFFF
0022
0022 E4El
0024 A880
0026 EOFA
0028 E3EA
002A
002A A20000
002D C3

, E

E

E

E

LINE

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
18'2
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
19is
199
200
201
202
203
204
205
206
207
208
209 +1

BPK-72 DRIVER ROUTINES.

SOURCE

; f.Ii _ •• t; ••••••••••••••

FUNCTION: BMCTRL - PERFORM BMC CONTROL OPERATIONS (NON-DATA TRANSFER).
INPUTS: NONE
OUTPUTS: A=STATUS;F/F(C=l: AN ERROR OCCURED).
CALLS: SNDREG,BMWAIT
DESTROYS: ALL
DESCRIPTION: THIS PROCEDURE IS USED TO PERFORM NON-DATA TRANSFER

BMC OPERATIONS.
;
BMCTRL:

CALL
MOV
OUT
CALL
AND
MOV
JNZ
CLC
RET

SNDREG
AL,BMCMD
BMSTAT,AL
BMWAIT
AL,STATER
AL,STATUS
SHORT CTRL99

LOAD BHC REGISTERS.
GET COMMAND.
INITIATE COMMAND.
WAIT FOR COMPLETION.
DO WE HAVE AN ERROR?
LOAD STATUS INTO 'A' FO~ EXIT
ERROR, RETURN WITH fLAG SET.
CLEAR CARRY(ERROR FLAG)
AND RETURN

·WE HAD AN ERROR, RETURN WITH ERROR FLAG(CARRY FLAG) SET.
THIS IS THE GENERAL ERROR EXIT

,
CTRL99:

MOV
STC
RET

STATUS,AL

; ••••••••••••••• , •••••••••••• '1

FUNCTION: BMWAIT
INPUTS: NONE
OUTPUTS: STATUS IN A
CALLS: NOTHING
DESTROYS: A,F/F

SET ERROR FLAG (CARRY FLAG)
AND RETURN.

DESCRIPTION: THIS PROCEDURE WILL WAIT UNTIL THE CURRENT BMC
OPERATION COMPLETES.

BMWAIT:

CHECK CURRENT STATUS (GOOD ONLY IF RAC=O AND BSY=O)

. WAITPO:

WAITEX:

$EJECT

IN
TEST
JZ
MOV

IN
TEST
LOOPNZ
JCXZ

MOV
RET

AL,BMSTAT
AL, BUSYBT
SHORT WAITEX
CX,OF.FFFH

AL,BMSTAT
AL,BUSYBT
WAITPO
CTRL99

STATUS,AL

~ GET BMC STATUS
CHECK BUSY BIT.
NOT.BUSY, ALREADY DONE.
JUST IN CASE •••
POLLED WAIT MODE
GET STATUS
CHECK BUSY BIT
LOOP IF STILL BUSI
PROBABLY AN ERROR IF CX=O
CORRECT STATUS AND RETURN.
A = STATUS

PAGE

3>
." .:..
<0

MCS-86 MACRO ASSEMBLER BPK-72 DRIVER ROUTINES. PAGE

LOC OBJ LINE SOURCE

210 ; ••••• ~ •••••• , ••••• I ••••• Q* ••

211
212 FUNCTION: BHREAD
213 INPUTS: CX = NUMBER OF BYTES TO READ, ES SET TO DS
214 OUTPUTS: A = STATUS; F/F(C=l: ERROR OCCURED)
215 BX = NUMBER OF BYTES READ
216 CALLS: SNDREG
217 DESTROYS: ALL
21B DESCRIPTION: ALL PARAMETERS ARE PASSED THROUGH COMMON(PUBLIC)
219 VARIABLES(SEE MODULE HEADER).
220

002E 221 MREAD:
o 02E 32CO 222 XOR AL,AL A = 0
0030 A20000 E 223 MOV STATUS,AL CLEAR STATUS.
0033' BBD9 2.24 MOV BX,CX SAVE BYTE COUNT FOR LOOP
0035 E8A200 225 CALL SNDREG SEND REGISTERS TO BMC.
0038 8s3EOOOO E 226 MOV DI,BUFADR SET UP DEST BFR PTR (IN EXTRA SEG)
o 03C BCD8 227 MOV AX. DS
003E BECO 228 MOV ES,AX SET EXTRA SEG FOR BYTE MOVE DEST
0040 AOOOOO E 229 MOV AL.BMCMD GET COMMAND
0043 E6El 230 OUT BMSTAT.AL ISSUE IT.

231
0045 B9FFFF 232 MOV CX.OFFFFH
004B 233 BMRDl : »

cp 0048 E~El 234 IN AL.BMSTAT 'tI
01' 004A A880 235 TEST AL,BUSYBT .:...
01 004C E1FA 236 LOOPZ BHRDl WAIT FOR BUSY. BUT NOT FOREVER

004E E3C4 237 JCXZ CTRL99 CX=O PROBABLY AN ERROR CD
0050 8BCB 238 MOV CX.BX

239
240 READ LOOP
241
242

0052 243 BMRD2 :
0052 E4E 1 244 IN AL.BMSTAT GET STATUS
0054 A801 245 TEST AL, FIFOBT FIFO EMPTY?
0056 7407 246 JZ SHORT BMRD3 YEP, GO CHECK FOR BUSY.
0058 £4EO 247 IN AL,BMDATA NOPE, GET DATA
005A AA 2~8 STOSB STORE IT
005B E2F5 249 LOOP BMRD2 AND GO FOR MORE.
005D EBBA 250 JMP BMWAIT XFER DONE, WAIT FOR A GOOD STATUS
005F 251 BMRD3 : NOTHING IN FIFO, IS OP COMPLETE?
005F A88e 252 TEST AL,BUSYBT CHECK BUSY BIT
0061 75EF 253 JNZ BMRD2 STILL BUSY, WAIT.
0063 2BD9 254 SUB BX.CX BX <- # OF BYTES XFERED
0065 EBAD 255 JMP CTRL99

256 +1 $EJECT

M S-86 MACRO ASSEMBLER BPK-72 DRIVER ROUTINES. PAGE 8

LOC OBJ LINE SOURCE

2~7 ;•....•••.••..
258
259 FUNCTION: BMWRIT - WRITE BUBBLE MEMORY DATA,
260 INPUTS: CX = # OF BYTES TO WRITE.
261 OUTPUTS: A = STATUS; F/F(C=l:ERROR OCCURED), BX=# OF BYTES WRITTEN.
262 CALLS: SNDREG,BMWAIT.
263 DESTROYS: ALL.
264 DESCRIPTION: THIS PROCEDURE PERFORMS A BUBBLE MEMORY WRITE OPERATION.
265 AN ERROR, WILL OCCUR IF THE NUMBER OF BYTES GIVEN FOR THE
266 WRITE OPERATION EXCEED THE NUMBER THAT THE BMC EXPECTS
267 (DERIVED FROM COMMAND, BLOCK LENGTH AND, NUMBER OF FSA
268 CHANNELS), OR IF THE NUMBER OF BYTES IS LESS THAN THAT
269 WHICH THE BMC EXPECTS.
270 ,

0067 271 BMWRIT:
0067 32CO 272 XOR AL,AL A = 0
0069 A20000 E 273 MOV STATUS,AL CLEAR STATUS
006C, 8BD9 274 MOV BX,CX
006E BOlD 275 MOV AL,CFR
0070 E6El 276 OUT BMSTAT.AL FIFO RESET
0072 £86500 277 CALL SN'DREG SEND REGISTERS TO BMC.
0075 8B360000 E 278 MOV SI,BUFADR SET UP SRC BFR PTR (IN DATA SEG)
0079 AOOOOO E 279 MOV AL,BMCMD GET COMMAND
007C E6El 280 OUT -BMSTAT,AL ISSUE IT. l>

Cf', 007E 281 WRIT01: "tI
0'1

007E E4El 282 IN AL,BMSTAT .:..
CJ) 0080 A880 283 TEST AL, BUSYBT WAIT FOR BUSY ••• ..:..

0082 74FA 284' JZ WRITOl <0
0084 A801 285 TEST AL,FIFOBT AND FIFO READY
0086 74F6 286 JZ WRITO 1

287
288 KEEP STUFFING DATA INTO FIFO UNTIL DONE OR AN ERROR OCCURS.
289 (NOTE: BMC GOING NOT BUSY IS AN ERROR).
290

0088, 291 WRIT03:
0088 E4El 292 IN AL, BMSTAT GET STAT'US
008A ABOl 293 TEST AL,FIFOBT FIFO READY?
008C '7407 294 JZ WRIT04 NO. WAIT FOR IT
OOBE AC 295 LODSB YES, GET DATA FOR IT
008F, E6EO 296 OUT BMDATA,AL GIVE IT TO BMC
0091 E2F5 297 LOOP WRIT03 LOOP UNTIL DONE.
0093 EB84 298 JMP BMWAIT XFER DONE, WAIT FOR A GOOD STATUS
0095 299 WRIT04,
0095 ABBO 300 TEST AL,BUSYBT
0097 75EF 301 JNZ WRlT03 OK IF STI~L BUSY
0099 2BD9 302 SUB BX,CX BX <- # OF BYTES XFEHED
o 09B E916FF 303 JMP CTRL99 ERROR IF NOT BUSY AND CX NOT ZERO

304
305 SPECIAL WRITE FOR HOOT LOOP AND BOOT LOOP REGCMNDS
306

009E 307 BMWRTB:
009E 32CO 30B XOR AL,AL A = 0
OOAO A20000 E 309 MOV Sl'ATUS,AL CLEAR STATUS
00A3 8BD9 310 MOV BX, ex
00A5 BOlD 311 MOV AL,CFR

MCS-86 MACRO ASSEMBLER

LOC OBJ LINE

00A7 E6El 312
00A9 E82EOO 313
OOAC 8B360000 E 314

315
316
317

OOBO 31~

OOBO AC 319
OOBl E6EO 320
00B3 E2FB 321
00B5 AOOOOO E 322
00B8 E6E 1 323
OOBA E95CFF 324

325 +1

en
cJ,
-oJ

BPK-72 DRIVER ROUTINES.

SOURCE

OUT BMSTAT.AL
CALL SNDREG
MOV SI.BUFADR

FILL FIFO WITH 20140/41 BYTES
,
WRTB01: ,

LODSB
O~T BMDATA,AL
LOOP WRTBOl
MOV AL, BMCMD
OUT BMSTAT,AL
JMP BMWAIT

$EJECT

FIFO RESET
SEND REGISTERS TO SMC.
SET UP SHC BFR PTR (IN DATA SEG)

STICK IN FIFO.
LOOP UNTIL FILL COUNT=O.

SEND CI1ND

PAGE

~
"tJ
.:...
CD

M s-86 MACRO ASSEMBLER BPK-72 DRIVER ROUTINES. PAGE 10

LOC OBJ LINE SOURCE

326 ;
327
328 FUNCTION: ZAPREG - ZAP ALL INTERNAL REGISTERS.
329 INPUTS: NONE
330 OUTPUTS: NONE
331 CALLS: NOTHING
332 DESTROYS: NOTHING.
333 DESCRIPT ION: SET ALL INTERNAL REGISTERS EXCEPT 'ENABLE' TO AN
334 ACCEPTABLE VALUE. NOTE: AN ACCEPTABLE VALUE M~Y

335 OR MAY NOT BE THE ONE DESIRED AS A DEFAULT.
336 ,

OOBD 337 ZAPREG:
OOBD 9C 338 PUSHF SAVE FLAGS
OOBE 50 339 PUSH AX SAVE REGISTERS
OOBF 5~ 340 PUSH BX
OOCO BBOOOO 341 MOV BX.O
00C3 891EOOOO E 342 MOV PAGENO,BX STARTING PAGE NUMBER 0
00C7 43 343 INC BX
00C8 891EOOOO E 344 HOV, BLKLEN.BX BLOCK LENGTH = 1
OOCC 32CO 345 XOR AL,AL
OOCE A20000 E 346 HOV BBLNUM.AL BUBBLE NUMBER = 0
OODI FECO 347 INC AL
00D3 A20000 E 348 MOV NFC.AL # OF FSA CHANNELS 1 (2 CHANNELS)
o OD6 5B 349 POP BX RESTORE REGISTERS. l>

cp 00D7 56 350 POP AX l'
U1 00D8 9D 351 POPF
(J) 00D9 C3 352 RET

353 +1 $EJECT CQ

H S-86 MACRO ASSEHBLER BPK-72 DRIVER ROUTIN~S. PAGE 11

LOC OBJ LINE SOURCE

354 ; ••••• ~ •••••••••• ~ •••••••••••• I

355
356 FUNCTION: SNDREG - FORHAT AND SEND INTERNAL REGISTERS TO BMC.
357 IN PUTS: NONE

'358 OUTPUTS: NONE
359 DESTROYS: NOTHING.
360 DESCRIPTION: FORHAT ANO SEND ALL INTERNAL REGISTERS TO THE BHC.
361

OODA 362 SNDREG:
OODA 9c 363 PUSHF

.OODH 50 364 PUSh AX SAVE REGISTERS
OODC 53 365 PUSH BX
DODD 51 366 PUSH CX
OODE BOOB 367 HOV AL,REGl GET .IRST REGISTER ADDRESS.
ODED E6El 368 ODT BHSTAT,AL SELECT IT.

369
370 CONSTRUCT AND SEND BLOCK LENGTH.
371

00E2 8B lEOOOO E 372 HOV BX.BLKLEN HL = BLOCK LENGTH
00E6 8AC3 373 MOV AL,BL A BLOCK LENGTH LSB
00E8 E6EO 374 OUT BMDATA,AL GIVE IT TO BHe.
OOEA AOOOOO E 375 HOV AL.NFC A NUMBER OF .SA CHANNELS.
ODED Bl04 376 HOV CL,4
OOEF D2EO 377 SHL AL,CL >

cp OOFl OAC7 378 OR AL,BH HERGE INTO BLOCK MSB 'U
00'3 E6EO 379 DOT BHDATA,AL GIVE IT TO BHC. :... (11 380 (0

381 SEND ENABLE BYTE. CD
382

00F5 AOOOOO E 383 HOV AL,ENABLE GET ENABLE BYTE
00F8 E6EO 384 OUT BHDATA,AL GIVE IT TO BMC

385
386 CONSTRUCT AND SEND ADDRESS REGISTER.
387

OOFA 8B1EOOOO E 388 HOV BX,PAGENO HL = STARTING PAGE NUMBER
OOFE 8AC3 389 HOV AL,BL A ADDRESS REGISTER LSB
0100 E6EO 390 OUT BMDATA,AL GIVE IT TO BMC,
0102 AOOOOO E 391 MOV AL,BBLNUH A BUBBLE NUHBER
0105 Bl03 392 HOV CL,3
0107 D2EO 393 SHL AL.CL
0109 OAC7 394 OR AL,BH HERGE INTO PAGE NUHBER HSB.
010B E6,EO 395

396
OUT BHDATA,AL GIVE IT TO BHC.

397 RESTORE REGISTERS AND RETURN,
398

0100 59 399 POP cx
010E 5B 400 POP BX
010F 58 401 POP AX
0110 9D 402 POPF
0111 C3 403 RET

404 +1 .EJECT

M S-86 MACRO ASSEMBLER

LOC OBJ

m
cD o

LINE

405
406

SOURCE

CODE ENDS
END

BPK-72 DRIVER ROUTINES. PAGE '2

l>
"tI
..:..
(I)"

M S-B6 MACRO ASSEMBL~R BPK-72 DRIVER ROUTINES. PAGE 13

XREt SYMB-OL. TABLE LISTING'
------ --;..--

NAME ' TUE VALUE ATTRIBUTES, XREFS

,? ?SE'G SEGMENT SIZE=OOOO. PARA PUBLIC
B'BLNUM. V BYTE OOOOH EXTRN ,161 3~6 391
BL'kLEN. V WORD OOO'OH EXTRN 151 3~~ 372
'BMCHD' • V BY'!E OOOOH EXTRN 161 167 229 279 322
BMCTRL. L NEAR OOOOH CODE PUBLIC 131 , 1651
BMDATA '. NUMBER OOEOH 5~I 2~7 296 320 37~ 379 38~ 390 395
BMRD1' • L NEAR 00~8H CODE 2331 236,
BMRD2 • L NEAR 0052H CO'DE 2~31 2~9 253
BMRD3 • L NEAR 005FH CODE 2~6, 2511
'BHRE'AD. L NEAR 002EH CODE' PUBLIC 131 2211
BMSTAK. ' L NEAR OOOOH EXTRN 81
BHS!A!. NUMBER 00E18 53' 168 197 202 230 23~ 2~4 276 280 282 292 312 323 368
BMWAlT. i. NEAR 0019H CODE PUBLIC 131 169)931 250 298 324
BilwRIT. L NEAR 0067H CODE PUBL'IC 131'2711
BMWRTB. L NEAR 009EH CODE PUBLic 131 3071
BPADR V WOliD OOOOH EXTRN 23'1
BUFADR. V WORD OOOOH E~TRN 15# 226 278 31~
BUSYBT. NUMBER 0080H 651 198 203 235 252 283 300
CAB ,; NUHBER 0019H ~3#
CFR • NUHBER 001DH ~7# 275 311 l>

.~
CIZ • NUMBER 0011H 351

" CODE. SEGMENT SIZE=0112" PARA PUBLIC 781 79 ~05
CORERR. NUHBER 00088 611

.....
~

CPURG NUMBER 001EH, ~81 ,CD
CRB '; NUMBER 001BH ~51
CRBR. ' NUMBER 0015H 39#
CRCD; NUMBER DOlCH :461
CRD' .' NUMBER 0012H 361
CRFS. NUHBER 00'18H ~2#
CRS • NUMBER 001~H 381
CSR .' NUHBER 001FH ~91
CTRL99. L NUR 001411 CODE' 172' 179# 205 237 255 303
CWB • NUHBER 0017H ~11
CWBR'. NUHBER 0016H ~UI
CWBRH NUHBER 0010'H 3~#
CWD_. NUHBER 00'13H 371
CWRS. NUMBER 001AH 4~#
DATA. SEGHENT SIZE=OOOOH PARA PUBLIC 111 28 79
DBGHOD. NUMBER 0080H 1531
DEFADR. V WORD OOOOH EXTRN 13#
DEFBLK. V WORD OO'OOH EXTRN 1~#
DEFBUB; V BITE OOOOH EXTRN 13#
DEFENA. V BYTE OOOOH EXTRN 13#
DEFMOD. V 'BYTE OOOOH, EXTRN 1~1
DEFNFC. V BYTE OOOOH EXTRN 13#
DEFPAG.,. V WORD OOOOH EXTRN J~I
OHAENA. NUHBER OOO~II 71#
DHAHO'D. ilUMBSR 0002H 1521
ENABLE. V BYTE OOOOH EXTRN 15# 383,
FIFOBT. NUH'BER 0001H 58# 2'~5 285 293
ICDENA. ' NUMBER 'OO~OH 751

MCS-86' MACRO' ASSEMBLER BPK-72 DRIVER ReUTINES. PAGE 14

NAME TYPE VALUE ATTRIBUTES. XREFS

lERENA. NUMBER OCC2H 70"
INBUF • V 'BYTE cceCH EXTRN 171
INBUFA. V weRD CCOCH EXTRN 18'
INBUFC; V BYTE COCCH EXTRN' 17#
INBUFL. V BYTE CCCCH EXTRN 18'
INBUFP. V weRD CCCCH EXTRN 171
INTENA. NUMBER CCC1H 691
lNTMeD. NUMBER CCC'lH '1511
LEVMSK. V BYTE CCCCH EXTRH 221
MeDE.' • V BYTE CCCCH EXTRN 16'
MYDUF • Y BYTE CCCCH BXTRN 121
NFC'; • V BYTE COCCH EXTRN 16',348 315
CPDeNE. NUMBER CC4CH 641
ePFAIL; NUMBER CC2CH 63'
CUTBFA. V WDRD ,CCCCH EXTRN 20"
DUTBFC. Y' UTE "CCCCH EXTRN 19#
QUTBtL. Y BYTE DDCCH EXTRN 20'#
DUTBFP; Y WDRD CDDCH ' EXTRN 19'
'DUTBUF. ,Y BITE C'OCDH EXTRH 191
PAGEHe. v,weRD 'CDCDH ' EXTRN 15# 342 '388
PARERR; HUMBER OCC2H 59"
PDPREGS Y weRD CCCDH EXTRH 24#
PRCMPT. • V "BYTE CQOOH 'EXTRH 22#
PUSHREGS. 'V',IIDRD ,CCC,CH ,EITRN 24'

~ RAM • V BYTE COCDH, EXTRN ,121

~
RCDENA. ,.' 'NUMBER DC2CH 74' "U
ilDLEN ,v WO'RD C'CCCH EURN 211 .:a.
,REG'I. HUMBER CCCBH 137# 367

.....
RSVDl N'UMBER OCC8H 721

CO
RSV.D2 • NUMBER CCaCH 16#
SCRBUF. V BYTE CC,CCH EXTRN 121,-

,SHDREG. L NEAR CCDAH: ceDE' 166 225 277 313 362#
STACK- • SEGM'ENT - , SLZB=CCCCH PARA STACK
-SUTER. N-UMBBB CC3CH 138# 170"
S'l'A'TUS. V BYTE CCCCH EXTRN 16' 171 180'20'1 223 273 30'9
T tHERR. NUMBER- CCICH 62#
UNeERR. NUMBER C'CC4H 60'1
USERBP., ,v WCRD _ CCCOH BITRN 25#
US'BRBX. Y 1i0RD CCCCH EXTRN 25#
USElics. V WCRD CCCCH EXTRN 26#
USERIiS. V WCRD CCCOH BXTR'N 25;
USERFL. • -V liaRD cccoli BXTRN -26#
lISERIP. V weRD 'OCCOH EXTRN 26#
US-ERPe. V WO'RD occe-H EXTRN 27#
USERRG. V weRD OCCOH EXTRN 23#
USERSP-. V ,weRD COCCH EXTRN 26#
USBRSS'. V weRD CCOCH EXTRN 25#
IIA1T8X. L-NEAR CC,2AH ceDE 199 20'6#
llAITPe. L,NEAR CC22H CODE 20'11 20'4
IIBLENA. NUMBER CC1CIt 73#
WRITCI. L NEAR CC7EH C-ODE 2811 284 286
WRITC~ • L NEAR CC88H ceDE 291# 297 30'1
WRITClf • t NEAR CC95-H CCDE 294 299#
WRLEN , -- V weRD', -CCCCH EXTRN 211
'WRTBC1. 'L NEAR eCBCH CCDE 318# 321

MCS-86 MACRO ASSEMBLER

NAME TYPE VALUE ATTRIBUTES, XREFS

ZAPREG. L NEAR OOBDH CODE PUBLIC 131 337#

ASSEMBLY COMPLETE. NO ERRORS FOUND

~
Ul

BPK-72 DRIVER ~OUTINES. PAGE 15

J>
"tI
.:...
CD

